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ABSTRACT

Evidence of the prevalence of wireless networking devices can be seen everywhere. These days,

more and more consumer electronics are being released with the ability to communicate with each

other, free from the limitations of wires and restricted only by distance. These advances have

also greatly helped with the mobile robotics field as well. Many algorithms can now move from

computer simulations to real robotic systems, helping to develop practical applications that solve

important problems involving multiple robot.

This thesis explores two problems in networked robotics. Its contributions are organized in

two parts.

The first part of this thesis addresses the following problem: imagine a number of robots,

with unknown locations, are scattered in an environment. How can a network be formed as quickly

as possible? The thesis takes a theoretical approach to this problem of network formation by

presenting a novel network formation algorithm and analyzing its performance. The algorithm

developed is then contrasted and compared to another algorithm that has a more intuitive, but

not necessarily more efficient, approach. The performance bounds of these two algorithms are

analyzed and compared from both a mathematical standpoint and in computer simulations. A

proof-of-concept implementation on a real system is also presented.

In the second part of the thesis, a networked mobile robot system that provides connectivity

services to mobile users is developed. This part of the thesis takes a systems approach and presents

the details of a full implementation of two algorithms for connectivity maintanence.

From a high level, it explores the challenges faced when implementing a system to test and

run simulated algorithms. It also covers different routing techniques that can be used to control a

set of distributed robots. From a low level, it looks at the different networking and development

technologies that are needed to develop a working system.

These two levels, when combined, cover every stage of a networking algorithm’s develop-

ment process: from analysis to simulation and even implementation. This thesis also covers the

entire application life-cycle of a networked robotics system from the initial network formation to

maintaining network connections in order to collectivity accomplish a given task.

x



CHAPTER 1
Introduction

1.1 Overview

Evidence of the prevalence of wireless networking devices can be seen everywhere. It has

become a necessary standard on every laptop computer released in the past few years. They have

even started to appear on devices often thought of as requiring connection wires such as printers,

scanners and digital cameras. These days, more and more consumer electronics are being released

with the ability to communicate with each other, free from the limitations of wires and restricted

only by distance. Wireless hotspots, where anyone with a laptop can just sit down and start using

the Internet, have exploded in urban environments. They are now appearing everywhere all over

the world from major corporate coffee shops such as Starbucks to locally owned cafes to even fast

food restaurants such as McDonald’s.

These advances have greatly helped the mobile robotics field as well. The mobile robotics

field has been around for many years with extensive research on topics such as multi-robot com-

munication and motion planning of distributed robots. Many algorithms rely on teams of robots

to communicate with each other to collectivity accomplish a given task. With the advances of

wireless and robotics technologies, it has become much more feasible to conduct research and

create systems using large groups of real mobile robots. This has helped to further push areas

of multi-robot systems into solving practical problems with real world applications such as floor

cleaning, lawn mowing, mine hunting, search and rescue. Along with these area coverage prob-

lems, teams of robots can also work together to map and explore unknown or even hostile remote

environments. This will in turn, lead to more robust consumer electronics where groups of robots

might one day help accomplish mundane tasks we reluctantly work on now. The iRobot Roomba,

released in 2002, is a small mobile robot that is used to autonomously vacuum a house and at the

time of this writing, has sold over three million units. This demonstrates that small mobile robots

are slowly but surely being incorporated into our normal lifestyles.

1.2 Motivation and Contributions

One of the most fundamental aspects of having teams of robots work together is their ability

to network and communicate. Often, this can become a challenge as there are many times when

the robots’ communication range is much smaller than the area of their environment. This is

1
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especially true when considering the limited range of wireless radios and the vast environments

mobile robots might one day be assigned to explore. Robots distributed in this environment will

face the difficult problem of setting up an initial communication network, even if they are scattered

randomly outside of each other’s communication range. This situation is explored in the first of

two contributions of this thesis.

The first part of this thesis takes a theoretical look at the problem of network formation by

developing an algorithm to solve this fundamental challenge to mobile robotics. This problem is

unavoidable for many situations but is often overlooked by many mobile robot algorithms. This

thesis presents a new algorithm, Stripes, and analyzed its performance. The Stripes algorithm is

then contrasted and compared to another algorithm that has a more intuitive, but not necessarily

more efficient, approach. The performance bounds of these two algorithms are analyzed and

compared from both a mathematical standpoint and in computer simulations. A proof-of-concept

implementation on a real system is also presented.

While a limited communication range is seen as a problem in many cases, there are also

other scenarios where its properties can be used to solve problems and provide practical appli-

cations. One of these applications is presented in [14]. In this paper, several mobile robots use

their wireless radios to help maintain a constant multi-hop network connection between another

mobile device and base station, both outside of each others’ communication range. The properties

and limitations of wireless communication play a large role in the development of the resulting

motion planning algorithms and an even larger role in the second contribution of this thesis: the

implementation of these algorithms on a physical mobile robot system.

The second part of this thesis focuses on the system component in the context of another

application. Its contribution is the development of a networked mobile robot system from the

ground up in order to implement the motion planning algorithms from [14]. From a high level, it

explores the challenges faced when implementing a system to test and run simulated algorithms. It

also covers different routing techniques that can be used to control a set of distributed robots. From

a low level, it looks at the different networking and development technologies that are needed to

develop a working system. This includes everything from the methods and formats that are used

to transfer data between robots to the programming techniques that allow for better and more

scalable applications to be created.

These two parts explore different aspects of wireless communications in robotics systems.

When they are combined, their contributions cover every stage of the development of a networked

robotic system. These stages include the creation, analysis and simulation of an algorithm, and
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the development and implementation of a robotic system. This thesis also covers the entire appli-

cation life-cycle of mobile robotics, starting with a common problem faced when they are initially

deployed into an environment. Afterwards, this thesis demonstrates how the robots could use their

network to effectively work together and collectivity accomplish a given task.

1.3 Outline

This thesis is separated into three main chapters with the first chapter dedicated to the

introduction, motivation and contributions.

Chapter 2 studies the problem of network formation and proposes an algorithm which ef-

ficiently passes information from one robot to all of the other robots in the environment. It first

introduces the problem, some background information and the problem formulation. Afterwards,

Section 2.3 explains the new network formation algorithm, which is analyzed and contrasted to

another possible solution to the problem. These two strategies are simulated and their results are

compared in Section 2.4. Section 2.5 demonstrates the feasibly of the proposed algorithm in a

proof-of-concept experiment. The chapter ends with a discussion on possible extensions to the

algorithm and future work.

Chapter 3 is dedicated to the mobile robotic system used to implement the motion planning

algorithms from [14]. This chapter explores the many different networking technologies and rout-

ing techniques used at all levels of the system. It starts off with an introduction of the problem and

then gives an overview of the system and how it will use the motion planning algorithms. Sec-

tion 3.2 explains the routing strategies and techniques that the system uses to control the robots

from across the network. Afterwards, Section 3.3 dives down into the actual implementation and

describes the specific technologies it uses. An overview of the different custom applications and

some of their programming designs is given in Section 3.4. Following this, Section 3.5 describes

the experiments that were carried out using the mobile robotic system. The last section, Sec-

tion 3.6, describes the scalability of the system and improvements that can be made to further

increase its benefits and contributions.



CHAPTER 2
Network Formation Through Freeze Tag and Coverage

2.1 Introduction

Consider the following scenario: a number of robots are performing independent tasks

autonomously in an environment where there is no communication infrastructure. Suppose, at

a certain point, mission priorities change and a piece of information must be propagated to all

nodes. For example, robots could be initially stationed to perform monitoring or surveillance in

a large environment. Upon detection of an event, they may have to form a network or perform a

collaborative task. What is a good strategy to get all robots involved as quickly as possible?

The contribution from this part of the thesis studies this process of propagating information

as quickly as possible. Specifically, it studies the case where the process is initiated by a single

robot. This robot could, for example, be sent out from the command and control center. Alterna-

tively, it could be the robot that detects an intruder. The primary difficulty in solving the problem

arises from the fact that the robots do not know each others’ positions. The first robot must there-

fore start a search. Once discovered, other robots can participate in propagating the information.

Since the primary motivation for studying this problem is to form a connected network, throughout

this thesis this problem will be referred to it as the Network Formation Problem.

Contributions This chapter of the thesis studies a probabilistic scenario where the locations

of robots are chosen uniformly at random in a rectangular environment. For this scenario, a

network formation strategy (Stripes) is presented and prove that its expected performance (i.e.

network formation time) is within a logarithmic factor of the optimal performance. To obtain

this result, a lower bound on the expected performance of any network formation strategy was

obtained. Stripes is also compared with a natural, intuitive “Split and Cover” strategy and shown

that in large environments, Split and Cover has inferior performance to Stripes. In addition to

formal performance bounds, this work demonstrates the utility of Stripes with simulations and its

feasibility with a proof-of-concept implementation.

The next section starts with an overview of related work where connections are established

between the network formation problem and other fundamental problems such as rendezvous,

coverage and freeze-tag.

4



5

2.1.1 Related Work

Considerable work has been done in designing decentralized protocols for propagating in-

formation in networks (also known as gossip protocols) [7]. Gossip protocols are mainly designed

for stationary networks. In contrast, this work focuses on information propagation among mo-

bile robots. The network formation problem is closely related to the Freeze-Tag problem [4]. In

freeze-tag, a number of players are “frozen”. A single unfrozen player must visit each frozen

player in order to unfreeze it, at which point it can aid in unfreezing other players. In freeze tag,

it is assumed that the players know each others’ positions. In network formation, this focus is on

the case where the node locations are unknown to each other.

Recently, Poduri and Sukhatme explicitly addressed the problem of forming a connected

network under the name coalescence [11, 12]. In their model, all of the nodes (other than the

base station) are performing a random walk on a torus. The authors obtain bounds on the network

formation time. The advantage of the random-walk strategy is that it does not require localization

with respect to a global reference frame. However, the network formation is rather slow because

nodes visit most locations many times. This may not be acceptable in time-critical applications.

This work addresses the problem of explicitly designing motion strategies for network formation

with guaranteed performance.

Since the focus is on the case where the robot locations are unknown, the network formation

problem is related to rendezvous and coverage.

The rendezvous search problem [2] asks how two players with unit speed can locate each

other when placed at arbitrary locations in a known environment. Typically, each player has a

radius of detection within which the players can establish communication. The goal of the players

is to find each other as quickly as possible. The rendezvous problem has been studied extensively

for two players on a line. Optimal or provably good strategies for various versions of this problem

have been established [1].

The problem of multi-player rendezvous search on a complete graph is studied in [15]. This

work addresses the question of whether players that meet should stick together or split and meet

again later. The result of this work shows that, if the players have no memory, then the optimal

strategy is to stick together. Also, simulations show that as the number of players increases, the

split and meet strategy becomes less effective. In general, this has limited applications because

the environment is a complete graph. In other words, players can teleport to arbitrary locations at

every time step.

Work in [3] describes a time optimal strategy for two-player limited visibility rendezvous
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in the plane with known and unknown distances. The optimal solution in this case is for one of

the players to follow a semi-circular spiral trajectory. This work also relates rendezvous in the

continuous domain to coverage problems. Deterministic and randomized multi-robot rendezvous

strategies were proposed in [13]. More recently, results on rendezvous in simply-connected poly-

gons have been obtained [8]. In [9], the authors provide upper and lower bounds on the time

complexity of two geometric laws that result in rendezvous.

The coverage or lawn mowing problem [5, 6] has been extensively studied and is known

to be closely related to Traveling Salesperson Problem. The primary difference between network

formation and standard multi-robot coverage is that in coverage, all robots participate in the cov-

erage process from the beginning. In network formation, the process starts with one robot, who

must “recruit” others to participate in coverage.

In short, the algorithm presented in this thesis can be considered a novel algorithm for

(i) online freeze-tag, (ii) probabilistic multi-robot coverage, and (iii) network formation.

2.2 Problem Formulation

Since the robot locations are unknown, network formation is an online problem. Online

problems are typically analyzed using competitive analysis where the input is chosen by an ad-

versary. The competitive ratio of an online algorithm O is the worst case ratio of the performance

of O to the optimal offline performance. In other words, this work compares O with the optimal

algorithm that has access to all of O’s choices in advance and consider the worst case deviation

from this optimal behavior.

It is easy to see that there is no online algorithm for the network formation problem with

bounded competitive ratio: no matter which path the first robot chooses, the adversary can place

all other robots at the last location the first robot will visit. In the case of a square environment

with area a2, the online algorithm would take time proportional to a2 whereas the optimal offline

cost would be at most in the order of a. Therefore the competitive ratio would be a and it would

grow unboundedly with the size of the environment.

Since there are no competitive online algorithms for network formation, in this thesis the

focus is on the probabilistic case where the locations of the robots are sampled from a distribution.

In the lack of any information, it is reasonable to assume that the locations are chosen uniformly at

random from the environment. The goal is to minimize the expected time to discover all robots. In

this thesis, the main focus is on rectangular environments and uniform distributions. It is believed

that the rectangular environment case has practical relevance for robots operating in an open field
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as well as for Unmanned Aerial Vehicles. Extensions to general convex environments are discusses

in Section 2.6.

2.2.1 Robot Model

In network formation, several identical mobile robots are distributed uniformly at random

within the bounded rectangle A with one of these robots possessing information that needs to be

propagated to all of the other robots. The rectangle A has a width w and height h where w ≥ h.

It is assumed that the robots are initially stationary. Once discovered, they can move anywhere

within the rectangle A at a constant speed and can communicate with each other within a limited

range. Once a robot is within the communication range of another robot, they can exchange any

information that either robot might have, including the information that needs to be propagated.

In this thesis, it is assumed that the robots can localize themselves within A. Energy limitations

are also ignored and it is assumed that the robots will always move at their maximum speed and

can utilize their wireless radio anytime.

Notation and Conventions: The units are normalized so that the robots move at unit speed

per time-unit. The rest of the paper abuses the notation and use A to denote both the rectangle

environment and its area. This convention implies that a single robot can cover the entire envi-

ronment in A time units. Hence, A is a trivial upper bound on network formation since inactive

nodes are stationary. The number of robots in the environment is k. It is assumed that the first

robot enters the environment at a corner of A.

2.3 Stripes: An Efficient Network Formation Strategy

This section presents the main result: an efficient network formation strategy referred to as

“Stripes”. This strategy relies on dividing the rectangular environment into n equal sized vertical

stripes S1, . . . , Sn (Figure 2.1). For now, n will be treated as a variable whose value will be fixed

later. Let S denote the area of a single stripe which is equal to the time to cover a single stripe

with one robot.

In the beginning, a single robot is active and proceeds to cover S1 with a simple back and

forth sweeping motion. That is, the robot follows the well-known boustrophedon1 path. When an

inactive robot is encountered and activated, this newly active robot does not join in the coverage

of S1 right away 2. Instead, it heads to a designated location on the line that separates S1 and S2

1boustrophedon = “the way of the ox” [6].
2In practice, this robot can participate in covering the stripe. However, this does not improve the analysis. Hence,

this benefit is ignored for analysis purposes.
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and waits for the first active robot to finish its coverage of S1 and arrive at the designated location.

When the first robot is finished, it meets all newly active robots at the same designated location.

Let k1 denote the number of active robots. The robots evenly divide S2 among themselves so that

it can be covered in parallel in time S2/k1.

When these k1 robots encounter other inactive robots in S2, the same procedure is repeated

and all active robots meet at a designated meeting location on the line which separates S2 and S3.

This process repeats for the remaining stripes until all of the stripes are covered, at which point,

the entire bounded area will be covered and all of the robots will be activated.

Figure 2.1: Stripes strategy: The environment is divided into equal vertical stripes which
are covered sequentially. Active robots split the current stripe equally. Once a
stripe is covered, all active robots (including newly discovered robots) meet at
the boundary of the stripe.

The environment that will be used to highlight the main ideas of the contribution is a rect-

angular bounded area where its dimensions are much larger than the number of robots available,

w ≥ h� k.

Saturation occurs when the number of robots exceeds the size of the shorter side of the

rectangular h, k ≥ h. When this happens, the remaing m × h area can be covered in m steps by

k or fewer robots. Further discussion of saturation can be found in Section 2.3.4. The analysis

will refer to the case where w ≥ h � k as an unsaturated environment and k ≥ h as a saturated

environment.

2.3.1 Network Formation with Stripes

This section will establish an upper bound on the network formation time of Stripes for an

unsaturated environment. The following lemma from discrete probability will be used.

Lemma 1 If k balls are assigned to n bins randomly, with high probability, the number of empty

bins is at most ne−
k
n .

See, for example, [10, pp. 94], for a proof of Lemma 1.

To obtain an upper bound on the network formation time with Stripes, the robots are treated

as balls and stripes as bins. The number of empty stripes, x is then x = ne−
k
n . In the worst case,
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all of these empty stripes occur at the beginning. When this happens, these stripes will be covered

with a single robot. The resulting coverage time is A
nx = Ae−

k
n for these empty stripes.

There are n − x remaining non-empty stripes. In the worst case, each stripe contains only

one robot with the remaining robots all residing in the last stripe. This results in a coverage time

of A
n for the first non-empty stripe, A

n

(
1
2

)
for the second, A

n

(
1
3

)
and so on for n − x stripes.

Therefore, the coverage time for the non-empty stripes will be:

n−x∑
i=1

A

n

(
1
i

)
=

A

n

n−x∑
i=1

1
i
≈ A

n
log(n− x) =

A

n
log
(
n− ne−

k
n

)
(2.1)

Let T (A, k) denote the expected time to cover area A with n stripes and k robots. From the

equations above:

T (A, k) = Ae−
k
n +

A

n
log
(
n− ne−

k
n

)
+ c (2.2)

Since robots group together before and after covering a stripe, there is some overhead asso-

ciated with the different strategies that can be used to cover an individual stripe. This is defined as

c in the equation and is discussed in the following section.

Finding the best upper bound for Equation 2.2 involves finding the number of stripes that

minimizes T (A, k) for a given number of robots.

Figure 2.2 shows T (A, k) as a function of n and k from two different viewpoints.

Figure 2.2: A 3D plot of the Stripes upper bound coverage time.

An analytical upper bound can be obtained by choosing the number of stripes to be n =
k

log(k) , which gives us the following upper bound on T (A, k).
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T (A, k) = Ae
− k

k
log(k) +

A
k

log(k)

log

(
k

log(k)
− k

log(k)
e
− k

k
log(k)

)
+ c

= Ae−log(k) +
A

k
log(k)log

(
k

log(k)
− k

log(k)
e−log(k)

)
+ c

=
A

k
+
A

k
log(k)log

(
k

log(k)
− 1
log(k)

)
+ c

<
A

k
+
A

k
log(k)log(k) + c

=
A

k
+
A

k
log2(k) + c

Hence, the following result:

Lemma 2 The network formation time for k robots in a rectangular unsaturated environment with

area A is O(Ak log
2(k)) when robots execute the Stripes algorithm with n = k

log(k) stripes.

In establishing Lemma 2, the overhead c is ignored. This is justified in the next section.

2.3.2 Covering a Single Stripe

This section presents a strategy for multiple robots to cover a single stripe in a way that

minimizes the constant c in Equation 2.2. Overhead occurs when the robots are regrouping and

redistributing themselves to equally cover the next stripe. After meeting, the robots must travel

to their newly assigned coverage areas and will most often have to travel through areas that have

already been covered or will be covered by another robot. Since this overhead hurts the overall

coverage time, and a strategy is presented that will practically eliminate the overhead for large

rectangular environments.

The Stripes algorithm calls for all of the active robots to meet and regroup between covering

stripes. The proposed single stripe strategy first sets the meeting locations to always be located on

the same side of the environment as the previous meeting location. Essentially, at the end of the

algorithm, all of the meeting locations will be lined up along the same side of the environment.

In order to minimize the coverage time of a single stripe, its area must be split equally

between all of the active robots. This can be simply done by dividing the strip along the long side

to create equal sized rectangular areas, one for each of the active robots. However, this presents

a problem where the robot that has to cover the area furthest away from the meeting location has

to travel the entire length of the environment. Since this area will be eventually covered by the

other robots, this produces an overhead of 2h per stripe, adding up to 2nh for the entire bounded
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area A. To eliminate this overhead, the single stripe strategy removes the area that a robot covers

while traveling to its assigned coverage area from the assigned areas that belong to the other active

robots. This prevents areas from being covered multiple times and thus, eliminating the overhead.

However, in doing this, the coverage area for the robots are now uneven since the robot that is

closest to the meeting locations will cover the least amount of area because it is gradually chipped

way and assigned to the other active robots. To once again achieve minimal coverage time, each

robots’ assigned rectangular coverage area must now be resized to take into account the areas

gained while traveling to and from the meeting locations. In the end, the paths of the robots

resemble archways with different sized horizontal areas that inversely proportional to the distance

a robot needs to travel to the meeting location (Figure 2.3). The “legs” of the archways represent

the areas covered by each robot as they travel up to their assigned rectangular areas.

Figure 2.3: This single stripe coverage strategy divides a vertical stripe into equally sized
areas that take into account any additional area covered by a robot as it travels
away from the meeting locations (large black dots). This figure shows the result-
ing divisions for six active robots and the designated Bi values used to reference
the height of the horizontal rectangular areas.

Given a particular vertical stripe to cover with r active robots, letA1, A2, A3...Ar designate

the total assigned coverage area for each robot, with robot i covering Ai and robot i = 1 covering

the area that is furthest away from the meeting location. Since each stripe is vertical, its area

is hwn = hw′. The height of the main rectangular part from each area Ai is assigned as Bi (see

Figure 2.3). This is the parameter that changes to offset the additional area covered from traveling.

Each robot’s wireless radio is assumed to cover one unit area per time step so the additional travel

area covered by robot 1 is simply twice the distance from the meeting point to its assigned coverage

area or 2(h − B1). This produces the following equations for calculating the total area that each

robot must cover, with the generic equation as Equation 2.6:
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A1 = B1w
′ + 2(h−B1)

= B1(w′ − 2) + 2h (2.3)

A2 = B2(w′ − 2) + 2(h−B1 −B2)

= B2(w′ − 4) + 2h− 2B1 (2.4)

A3 = B3(w′ − 4) + 2(h−B1 −B2 −B3)

= B3(w′ − 6) + 2h− 2B1 = 2B2 (2.5)

Ai = Bi(w′ − 2(i− 1)) + 2(h−
i∑

j=1

Bj) (2.6)

Since each robot must cover the same area, the generic area formula at i and i − 1 can

be set equal to each other, producing a relationship between Bi and Bi−1 (Equation 2.9). From

here, all of the necessary heights for the rest of the areas can be calculated using a single given Bi

value. To find this, it is a simple matter of setting one of the area equations to the area of a single

stripe divide by the number of active robots. Therefore, in Equation 2.10, A1 is equated to hw′

r ,

producing Equation 2.11 where B1 is expressed using the number of active robots, r, the width of

a stripe w′ = w
n , and the height of the overall environment, h.

Ai = Ai−1 (2.7)

Bi(w′ − 2(i− 1)) + 2h− 2
i∑

j=1

Bj = Bi−i(w′ − 2(i− 1− 1))

+2h− 2
i−1∑
j=1

Bj (2.8)

Biw
′ − 2(i− 1)Bi − 2Bi = Bi−1w

′ − 2Bi−1(i− 2)
Bi
Bi−1

= 1 +
4

w′ − 2i
(2.9)
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A1 =
hw′

r
= B1(w′ − 2) + 2h (2.10)

B1 =
hw′

r − 2h
w′ − 2

=
h(w′ − 2r)
r(w′ − 2)

(2.11)

The limitation of the single stripe strategy is that the number of active robots must be less

than half of a single stripe width, r < w′

2 . This does not present a problem for the analyzed

environment where it is assumed that w = h >> k. Therefore, using this single stripe strategy,

each stripe can be divided into r equally sized areas with minimal repeated coverage and thus,

eliminating the overhead coverage time from the Stripes equation.

2.3.3 Lower Bound

This section establishes a lower bound on the expected network formation time that can be

achieved by any algorithm. It is easy to see that the best coverage time for any area occurs when all

of the robots are active at the beginning and the area is evenly split between all of them. Therefore,

the absolute lower bound for total coverage time, regardless of algorithm, is T (A, k) = A
k .

For the case when the robots are uniformly distributed, a better bound is obtained using the

following result.

Lemma 3 ( [10], pp.45) When n balls are assigned uniformly at random to n bins, with proba-

bility at least 1− 1
n , no bin has more than α = logn

log logn balls in it.

Now consider any network formation strategy for k robots in area A. During the execution

of this strategy, the coverage process is divided into epochs where ith epoch ends when all active

robots cover a (previously uncovered) total area of A/k. Let Si denote the subset of A covered

during epoch i. Let E1 be the event that no Si has more that α balls. By Lemma 3, E1 happens

with probability (1− 1/k).

When E1 happens, the maximum number of robots in S1 is α. Therefore, the minimum

time it takes to cover S1 is T1 = A
kα . There will be α new robots in S2, therefore its coverage time

T2 is at least A
k2α . Similarly, the ith epoch will last at least Ti = A

kiα steps.

Since there are k epochs, the total time for all epochs to finish will be:

k∑
i=1

A

kiα
≈ A

αk
log k =

A

k
log log k (2.12)
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When E1 does not happen (with probability 1
k ), the coverage time is at least A/k as dis-

cussed earlier. This gives us the lower bound on the expected coverage time of any algorithm.

Lemma 4 The expected time for k robots to cover area A is at least (1− 1
k )Ak log logk + ( 1

k )Ak .

Ignoring o( 1
k2 ) terms, a lower bound of Ω(Ak log log k) is established. Using Lemmata 2

and 4, the main result is established:

Theorem 1 The performance of the Stripes strategy is within a factor O( log2 k
log log k ) of the optimal

performance for a rectangular environment where w ≥ h� k.

2.3.4 Saturated Environments

In a saturated environment where k ≥ h, the analysis is a little different as the number of

robots can exceed the height. This section will prove that even though the number of robots ex-

ceeds the height of the bounded area, the Stripes algorithm will still run with a ratio of O
(

log2k
loglogk

)
.

The balls and bins analogy is still used with the balls analogous to robots and the bins to stripes.

2.3.4.1 Upper Bound

The main difference between the coverage time for a saturated environment and an unsat-

urated environment how the k ≥ h constraint affects the coverage of a single stripe. The single

stripe strategy section proposed a coverage strategy where a stripe is divided into horizontal areas,

one for each active robot. In a unsaturated environment the height of one of these horizontal area

will always be greater than one, even with the number of active robots increase in each stripe,

because h� k. However, in a saturated environment, eventually the number of active robots in a

stripe, r, will be equal to the height of a stripe because k ≥ h. When this occurs, each horizontal

area will have a height of only one unit and can be covered by having an active robot by simply

move from one end of the stripe to the opposite end. If overhead is not taken into account, this

produces a coverage time of w
n or the width of a single stripe. Once this situation occurs, having

additional active robots would not be able to decrease the coverage time because all of the robots

must already travel across the width of a stripe just to move from one meeting point to another.

Therefore, when r ≥ h, the coverage time for a stripe becomes w
n . Any stripe where this occurs is

called saturated.

This changes the original upper bound equation to contain an additional term. In the unsat-

urated environment, the coverage time was:
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Ae−
k
n +

A

n
log
(
n− ne−

k
n

)
(2.13)

This coverage time is a summation of the coverage time for the empty stripes and the cov-

erage time for stripes with a single robot in them. The term in the logarithm represents the total

number of non-empty stripes. For the saturated environment, this term will become the number

of non-empty stripes before before saturation occurs. Since saturation occurs when the number of

active robots exceeds the height and it is assumed that non-empty stripes only contain one active

robot, this term becomes h. The additional term is the coverage time for the saturated stripes,

which is the width of a single stripe multiplied by the number of remaining uncovered stripes.

This equates to w
n (n− ne−

k
n − h) = w − we−

k
n − A

n . The overall coverage time becomes:

Ae−
k
n +

A

n
log(h) + w − we−

k
n − A

n
(2.14)

One benefit of saturation is that when it occurs, there is no longer a need for the active

robots to meet after covering stripes.

2.3.4.2 Lower Bound

In the upper bound, the coverage time was different because k ≥ h had an effect on the

coverage time of a single stripe. However, in the lower bound, the epochs can be in any config-

uration in the environment so the shape of the area does not affect the coverage time. Therefore,

the lower bound remains at Ω(Ak log logk), producing the result:

Theorem 2 The performance of the Stripes strategy where the number of robots is greater than

the shorter side of a rectangular bounded area, k ≥ h, is within a factorO( log2 k
log log k ) of the optimal

performance.

2.3.5 Split-and-Cover

This section discusses the performance of the following intuitive and natural network for-

mation strategy: The first robot moves up and down the environment following a boustrophedon

path as before. When it meets an undiscovered node, the two nodes split the undiscovered parts of

the environment evenly and recursively cover their assigned partitions (see Figure 2.4).

The justification for this natural “Split-and-Cover” strategy is that since the nodes are scat-

tered uniformly in the environment, each split should divide the load equally between discovered

robots, therefore balancing (and intuitively minimizing) the network formation time.
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Figure 2.4: The Split-and-Cover strategy

It turns out that Split-and-Cover is not an effective strategy for large environments for the

following reason: suppose that when the split happens, one of the partitions has a very small num-

ber of robots. Even though this event has a small probability for a single split, as the number of

robots (and hence the number of splits) increases, it becomes probable. When such an imbalance

occurs, the algorithm can not recover from it. A small number of robots must cover a large en-

vironment making Split-and-Cover inefficient. This argument is further justified with simulations

and show that the Stripes algorithm is much more efficient than Split-and-Cover in unsaturated

environments.

2.4 Simulations

Two simulation programs were developed to help compare the Stripes and Split and Cover

algorithms. These simulations were designed in different ways and as a result, focused on different

aspects of the algorithm performance.

The first simulation program focused on just the running time of the algorithms and uses

a discrete grid environment where each cell represented one unit area. It also assumes that areas

can be split evenly regardless of their shape and it ignores the robot traveling time and overhead

associated with both of the algorithms. Section 2.4.1 is dedicated to this first simulation program

and the preliminary comparison results it produced.

The second program was focused on creating more accurate simulations of the overall en-

vironment and coverage algorithms. This program was written by Eric Meisner and featured a

continuous polygon area instead of a grid. It also took into account any overhead associated with

covering the environment and produced a more accurate calculation of the total coverage time.

Another improvement was that it demonstrated the single stripe algorithm with practical realistic

paths that robots would travel. Section 2.4.2 focuses on this program and its results.

2.4.1 Discrete Simulations

To better analyze and compare the two different strategies, as well as the other variables

that are present in the network formation problem, several simulations were developed to mimic
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a real world problem. These simulations provide a better understanding of how the coverage time

might be affected by different sized areas and the number of robots, and how each of the strategies

would run.

The simulations were conducted on a Java application (Figure 2.5) and the results were

analyzed using Matlab. In a real world situation, each robot would have a disc-like wireless

communication region and would be able to move continuously within the bounded area. For

simplicity and feasibility, the bounded area was discretized into a two dimensional grid with each

grid cell representing the amount of area that a robot’s wireless radio can reach. If two robots

appear in the same grid cell, then they are within each other’s wireless range and can communicate

with one another. The maximum speed of the robots allows them to cover only one grid cell per

time unit. Hence, the coverage time in the simulation is based on the number of grid cells a

robot has to cover. The simulation does not take into account any overhead that is associated with

splitting an area into equal sections for the split and cover strategy or with dividing stripes evenly

between all active robots in the stripes strategy. The robots were distributed uniformly at random

by starting them at random grid locations. It also allows the different covering strategies to be

compared more accurately by having the algorithms run on the same set of distributed robots as

inputs.

Figure 2.5: Java Simulator. Each side represents the bounded area after it is divided into
a discrete two dimensional grid with the left side running the Split-and-Cover
strategy and the right side running the Stripes strategy. The red squares repre-
sent cells with active robots, the blue squares represent cells with inactive robots.
Grid cells that have been covered already are colored yellow.

2.4.1.1 Split-and-Cover

The Split-and-Cover simulation runs the algorithm exactly as it is stated in Section 2.3.5.

It tracks the grid cell coverage by assigning each cell to be covered by an active robot. Initially,

all of the grid cells are assigned to the first active robot, which starts covering them from one of

the corner grid cells. When an inactive robot is discovered, the simulation simply assigns half of

original active robot’s remaining uncovered grid cells to the newly active robot. The robots then
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separate and proceed with the rest of the Split-and-Cover strategy, with this process repeating for

any other robots that they might find. Since each grid cell is always assigned to an active robot and

meetings only change the active robot that a cell is assigned to, the entire bounded area is covered

and the simulation ends when all of the robots have finished covering their assigned cells.

2.4.1.2 Stripes

In the Stripes algorithm, a single active robot starts out again in a corner grid cell and

moves across the bounded area, covering one stripe or group of grid cells at a time. When an

inactive robot is found, it becomes active but does not move. Although in the algorithm, this

newly active robot would move towards the meeting point, it is not necessary to demonstrate

this in the simulation as this robot will always be able to move to the meeting point before the

active robot covering the stripe will be able to. After the original active robot finishes covering

the stripe, the grid cells of the next stripe are divided evenly and assigned to each of the active

robots. These active robots then start covering their assigned grid cells and this process repeats for

the remaining stripes until all of the stripes are covered. This effectively mimics the single stripe

algorithm proposed in Section 2.3.2 without creating the complex polygon coverage areas.

2.4.1.3 Results

The first set of simulations was run on a bounded area of 100x100 grid cells with 99 ran-

domly distributed inactive robots and one active robot. The goal was to compare the Split-and-

Cover strategy with the Stripes strategy and to determine if the number of stripes had an effect

on the coverage time. The simulation results support the claim that the stripes strategy performs

better than the split and cover strategy. See Tables 2.1 and 2.2.

Split-and-Cover n=number of stripes Stripes
935.53 21 843.93
930.32 30 739.92
942.81 40 686.59
925.94 57 639.87
940.26 80 629.56
933.45 100 627.13
936.05 150 622.00
931.74 200 625.64

Table 2.1: Comparison of Split-and-Cover with Stripes for varying number of stripes.

The simulation in Table 2.1 also revealed that as the number of stripes increases, the cov-

erage time decreases. This makes sense intuitively as with more stripes, the size of each stripe
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decreases so the overall stripes distribution becomes more granular and any newly active robot

would be able to start covering area sooner. This decrease is not reflected in the theoretical analy-

sis because in simulation, empty stripes are distributed throughout the bounded area. The analysis

focused on the worst case and assumed that they all appear at the beginning.

The results also show that even if the number of stripes used is not optimal, the Stripes

strategy still outperforms the Split-and-Cover algorithm and yields efficient network formation

times.

A second set of simulations was run on various sized areas with varying number of robots

(Table 2.2). The goal of this experiment was to determine if there exists a relationship between the

size of the bounded area and the number of robots. This set of simulations also provided additional

comparisons between the efficiency of the Stripes strategy and the Split-and-Cover strategy. The

results show that when the area is held constant, having more robots will always decrease the

coverage time, regardless of the strategy used.
√
A k Split-and-Cover Stripes (n = k)

50 100 235.58 199.07
100 100 933.34 627.14
100 150 736.12 493.97
100 200 569.49 425.34
150 100 2125.06 1349.94
150 150 1580.96 1006.13
150 200 1281.36 808.71
200 100 3740.22 2333.19
200 150 2810.29 1709.20
200 200 2277.60 1395.47

Table 2.2: Simulation results for different areas and number of robots. The first column
represents the square root of a square bounded area or the length of one of the
sides. The second column represents the number of robots distributed within the
bounded area. The third and forth columns represent the network formation time
with the Stripes strategy using the same number of stripes as robots distributed
within the area.

The third set of simulations was aimed at determining how the number of robots affects the

running time for a given area size (Table 2.3). The results show a logarithmic decay as adding

more robots when there are only a few of them greatly reduces the amount of area that each robot

needs to cover (Figure 2.6). When there are a lot of robots already, adding more would only be

able to reduce the coverage time by a little as the bounded area is already widely spread between

many robots.
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k Split-and-Cover Stripes (n = k)
10 3904.85 3474.61
20 2648.97 2071.42
30 2082.37 1527.8
40 1741.61 1223.96
60 1325.24 891.41
80 1082.98 716.012
90 1020.73 663.022
100 933.34 627.14

Table 2.3: Simulation results for different number of robots in a 100×100 area. The first
column represents the number of robots distributed within the area. The second
and third columns represent the running time of the Stripes strategy using the
same number of stripes as robots distributed within the area.
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Figure 2.6: A plot of the results from Table 2.3.

2.4.2 Continuous Simulations

This section compares Stripes and Split-and-Cover in simulations with an continuous area.

It also presents simulation results that demonstrate the effect of the number of Stripes on the

performance of the Stripes algorithm.

The simulations were performed by representing each of the individual robots as a point

within the rectangular world. Each robot can be assigned to sweep along a continuous piecewise

linear path. As described in the Section 2.3, an active robot can detect an inactive robot when it

is within communication range. Each robot moves one unit distance per unit time and maintains

an internal clock, to represent the time with respect to the start of the first robot. Robots that meet

can synchronize clocks. The robots were placed uniformly at random within the environment at

the start of each trial. The simulation runs the algorithm exactly as it is stated in Section 2.3.5.
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Figure 2.7: This figure shows the simulation of the Stripes algorithm. Green circles are active
robots, and red circles are inactive. The black lines represent the paths of active
robots within the current stripe.

2.4.2.1 Split-and-Cover

The Split-and-Cover simulation runs the algorithm exactly as it is stated in Section 2.3.5:

It starts by decomposing the environment into a single piecewise linear (Boustrophedon) path,

starting at a corner of A, and assigning it to the first robot. When an an active robot discovers an

inactive robot, it splits the remainder of its assigned path, and gives half of it to the discovered

robot. The newly active robot travels a straight line to the start of its assigned trajectory. In doing

so, it counts the cost of travel by incrementing its internal clock accordingly. The simulation ends

when the last robot has completed its assigned coverage task.

2.4.2.2 Stripes

The Stripes algorithm divides the environment into n stripes. The first stripe is decomposed

into a continuous piecewise coverage path, as described in Section 2.3.2, and assign it to a single

active robot. The robot begins moving along this path and any robots that are discovered move

to the starting location of the next stripe. When all active robots have reached the meeting point,

the active robots synchronize their internal clocks. The next stripe is decomposed according to

Equation 2.7 and the number of active robots. These active robots then start covering their assigned

regions. This process repeats for the remaining stripes until all of the stripes are covered, or all of

the robots are active.
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2.4.2.3 Results

The first simulation compares Stripes and Split-and-Cover in environments that are sparse

and dense with respect to the number of robots per area.

Figure 2.8(a) shows the results of the Split-and-Cover and Stripes algorithms in an environ-

ment where the concentration of robots is low. The simulations use a 1000×1000 environment

and 20 robots. The plotted values are the average time to completion of 1000 trials, and the

value for each number of stripes uses the same set of initial robot distributions. These simulations

conclude that (i) the performance of the Stripes algorithm is sensitive to the number of stripes,

and (ii) in sparse environments (with a “good” stripe-number selection) Stripes outperforms Split-

and-Cover. This is also justified by Figures 2.9(a) and 2.9(b), where a histogram plot of running

times of the Stripes algorithm (with 25 Stripes) and Split-and-Cover. Stripes not only outperforms

Split-and-Cover on the average but also its worst case performance is considerably better.
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Figure 2.8: Comparison of Split-and-Cover strategy with Stripes algorithm for varying
number of stripes. The plotted values are the average time to completion of
1000 trials. Left: 1000×1000 unit world with 20 robots. Right: 100 ×100 unit
world with 20 robots.

On the other hand, when the concentration of robots is high, the Split-and-Cover outper-

forms Stripes (Figures 2.8(b),2.9(c),2.9(d)). There are two reasons that this is true. First, for

Split-and-Cover, the unbalanced split described in the previous section, occurs with extremely

low probability when the concentration of robots is high. Second, for Stripes the overhead cost

of meeting up to evenly distribute the coverage of a stripe, becomes very large compare to the

discovery time.

In conclusion, simulation results suggest that Stripes should be used in sparse environments

with the number of stripes equal to the number of robots. In dense environments, split-and-cover

algorithm is expected to yield better performance.
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(c) Split-and-Cover Dense
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Figure 2.9: Top:Distribution of time to completion for Split-and-Cover(2.9(a)), and for
Stripes(2.9(b)) in a sparse environment. Bottom: Distribution of time to comple-
tion for Split-and-Cover(2.9(c)), and for Stripes(2.9(d)) in a dense environment.

2.5 Experiments

This section demonstrates the feasibility of the Stripes algorithm using a small team of

three Acroname Garcia robots shown in Figure ??. The robots are each equipped with ARM/risk

PCs, and wireless network adapters. When configured to work in ad-hoc mode, the robots form

a wireless sensor network, each capable of determining its own set of neighbors in the network

graph.

Currently, the robots do not have visual localization capabilities. Therefore, motor encoders

and dead reckoning were relied on for position information. An external stereo camera was also

utilized as a means of determining the robot positions off-line (to obtain ground truth). The exter-

nal camera allows us to compute robot positions, but also limits the size of the work area to the

field of view of the camera. The experiments take place in a square workspace of 7.5 meters by

7.5 meters. These experiments where conducted inside of the institute gymnasium.

In practice, it would be useful to use wireless connectivity and connection strength to deter-

mine when an inactive node has been detected. However, in this setup the nodes would have to be
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separated by very large distances before observing a noticeable decline in signal strength. There-

fore, in order to demonstrate the algorithm in the restricted space, restrictions in communication

were simulated by allowing inactive nodes to be discovered only when they are within a short

range. Figure 2.10 shows the placement of the robots and their ideal strategies when executing

Stripes. Figure 2.11(a) shows an image of the experimental setup from the external camera. The

white lines superimposed on the image outline the workspace and stripe boundaries.Figure 2.11(b)

shows actual robot trajectories during the experiment computed from the image to ground plane

homography.

(a) Robot 1 (b) Robot 2 (c) Robot 3

Figure 2.10: The ideal trajectories for robots 1, 2 and 3 ( 2.10(a), 2.10(b), and 2.10(c) re-
spectively). The stripes are denoted by alternating white and gray. The first
robot starts at the lower left corner. The circle in Figure 2.10(a) is the meeting
location with robot 2. The third robot is discovered by robot 2. The meeting
location is shown in Figure 2.10(b)
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Figure 2.11: 2.11(a): This image of the experimental setup shows the environment divided
into three stripes. The paths traversed by each robot are shown in red, green
and blue (lines superimposed). 2.11(b): This image shows the actual trajectory
of each robot computed using the homography between the image and ground
planes.
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2.5.1 Results

In the experiment, each stripe is selected so that it can be covered by a single robot in 24

time units. This corresponds to three up and down motions (Figure 2.10). The initial placement

of the robots is shown by the start of each of the three paths in Figure 2.11(a). Robots move

approximately 1 meter per time unit. The total area of the workspace is approximately 56 m2.

The stripes are completed in 24, 16, and 8 time units respectively. Hence, the total completion

time is 48 units. Note that the total coverage time for a single robot is 72 time units. The measured

path lengths of each robot are 41.08, 25.848, and 13.26 meters respectively. In this setup, even

though odometry errors resulted in deviations from the ideal trajectories in Figure 2.10, they were

not significant enough to prevent proper execution of Stripes.

2.6 Extension to General Convex Environments

As mentioned earlier, the time to cover the environment is a trivial upper-bound on the

network formation time. This is because the undiscovered nodes are stationary, and by covering

the environment, the first robot can guarantee that all nodes are discovered. In a convex environ-

ment, this coverage time is proportional to the area of the environment A. In case of a rectangular

environment, it was shown that the Stripes algorithm performs much better than this upper bound.

In general environments, even when the environment is convex, the upper bound would be

achieved. To see this, consider a long 1 × A environment. In this environment, even when the

robot locations are chosen randomly, the network formation time would be roughly A because the

information is propagated sequentially and one of the robots is expected to be close to the “other”

end of the environment.

Therefore, the upper bound of A can not be beaten in some general convex environments.

The optimality of Stripes in the general convex case is currently being investigated.

2.7 Conclusion and Future Work

This chapter of the thesis introduced a novel network formation problem with ties to freeze-

tag and coverage problems. In the network formation problem, a robot tries to propagate a piece

of information to other robots with unknown locations as quickly as possible. Once a robot is

discovered, it joins in the information propagation process by searching for other robots.

An algorithm for rectangular environments was presented and analytically proved that its

performance is within a logarithmic factor of the optimal performance. The utility of the algorithm

was further demonstrated with simulations and a proof-of-concept implementation.
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In future work, network formation will be addressed in general environments, starting with

general convex environments. It is believed that the Stripes algorithm can be modified to achieve

good performance in such scenarios (compared to the optimal performance). Arbitrary environ-

ments, represented as polygons with holes, seem to be more challenging due to the lack of a natural

way of partitioning the environment. This plan of study will be both an interesting and equally

challenging problem in future work.



CHAPTER 3
Distributed Mobile Robotic System

3.1 Introduction

The systems component of my thesis is based on the algorithms developed in [14]. This

paper presents and simulates motion planning algorithms that run on several mobile robots in

a rectangular environment with obstacles. While these motion planning algorithms have many

benefits and applications, their performance and feasibility have only been tested in a simulated

environment. As with all algorithms and applications, their contributions and benefits are only

fully realized if they can be implemented in an actual usable system. In addition, many assump-

tions are often made during the analysis which are also overlooked in a computer simulation, such

as controlling a robot. In a simulation, it is very easy to control a robot since it is a simple mat-

ter of changing values within the application. This becomes non-trivial in a real mobile robotic

system where these values are stored on separate robots, which are often times outside of direct

communication range.

My contribution was to develop physical mobile robotic system and implement the motion

planning algorithms from [14]. Using this system, several experiments were ran to test the prac-

tically and performance of these algorithms, as well as provide real world experimental data and

results. The resulting robotic system was then extended to provide a more generic framework for

future algorithm implementations and distributed mobile robot experiments.

3.1.1 Robotic Routers Overview

The situation described in [14] is one where a wireless network connection must be main-

tained between a single mobile robot, referred to as the user, and an immobile base station. If the

user and base station are outside of each others’ wireless communication range, then additional

mobile robots can be deployed so that their wireless radios can be used as a makeshift network

bridge between the base and user. These mobile robots are call mobile routers since their network

bridge acts as a chain to relay all of the messages between the user and base, effectively connecting

them to each other. If the user decides to move, then these mobile routers must adapt and be able

to redistribute themselves to maintain the user-base network connection. The contribution of [14]

are algorithms to automatically and dynamically redeploy the mobile robots so that the user-base

network connection can be kept for as long as possible. The ultimate goal of the application is

shown in Figure 3.1.

27
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Figure 3.1: This shows the ultimate goal of the algorithms from [14] and the implementation
from this thesis. The base station (triangle) needs to connect to the user (black
car) but they are outside of each other’s communication range (dashed ellipses).
However, through the use of mobile routers (white cars), a multi-hop wireless
path (arrows) can be formed between them, allowing the user and base station
to communicate.

3.1.2 User Motion Models

In the robotic routers paper, there are two different motion models to describes how the

user behaves. The first model is a known user trajectory model in which the user trajectory in

the environment is known beforehand. In this case, the locations of the mobile routers can be

calculated for each step of the user before the user even starts moving. The second model is a

adversarial user trajectory model in which the user tries to break the connectivity as quickly as

possible. The reasoning is that if the routers can maintain connectivity in this model, then they can

maintain a connection for any possible user trajectory. However, for the actual experimentation, a

human is used to control the robot and the overall goal is to simply maintain connectivity without

knowing the user trajectory beforehand. Therefore, the second motion model is replaced with a

more generic unknown user trajectory model.

3.1.3 Experiments

Several experiments were conducted, both in simulation and in the real world implementa-

tion, using the two motion models to verify and measure the performance of the motion planning.

For the known trajectory model, before the user even starts moving, the mobile router loca-

tions for each time step are generated for the given user trajectory. In the simulation experiment,

the user and mobile routers moved to their respective locations at the same time and connectivity is

checked at all times to ensure a user to base connection is maintained. The real world experiment
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is identical to the simulated experiment only using physical robots in the actual environment.

In the unknown trajectory model, the mobile routers must respond to the user’s movements

at each time step. Their goal is to find the move that has the potential of maintaining the user

to base connectivity the longest. In the simulation experiment, the user moves in an adversarial

fashion to represent the worst case scenario for the mobile routers. For the actual real world

experiment, the user is a human with a laptop computer who can move to wherever he chooses. In

both cases, the test is to see whether the mobile robots can dynamically and correctly respond to

the user’s movements.

All of these simulations and experiments used an identical rectangular environment with

two rectangle obstacles as shown in Figure 3.2.

Figure 3.2: An overhead view of the environment for both the simulated experiments and
real world implementation experiments. The shaded area represents the possible
areas the robots can move in.

3.1.3.1 Simulation

In simulation, the user, mobile routers and base station are all modeled as identical robots

with a limited communication range. The continuous environment is discretized so that all of the

robots are restricted to a finite set of point locations as seen in Figure 3.3. This allows analysis

to be feasible without sacrificing accuracy since these locations are dense enough to represent the

physical properties of the surrounding areas. From these locations, a connectivity graph is set up

to represent whether robots at each pair of distinct locations are able to communicate with each

other. Movement is allowed only between locations that are adjacent to each other and two robots

may reside at the same location at the same time.

The simulated experiment runs on a discrete time step system that synchronizes the robots’

movements and motion planning calculations. All of the robots are only allowed to move from

one location to an adjacent possible location in one time step and their next moves are calculated
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Figure 3.3: An overhead view of the environment for both the simulated experiments and
real world implementation experiments showing the discrete possible robot loca-
tions as numbered circles.

at the end of each time step. In the known trajectory model, all of the robots move at the same time

since the mobile router locations have already been calculated before the start of the experiment.

For the adversarial model, the user movement, motion planning calculations for the mobile routers

and final mobile router movements are all contained in one time step.

3.1.3.2 Real World

In the real world implementation, the same environment is used with the user and mobile

routers all implemented on identical mobile robots as seen in Figure 3.4 for the known user trajec-

tory. In the unknown user trajectory experiment, a human using a laptop computer acts as the user.

A personal computer served as the base station where the algorithm processing and robot control

takes place. All of these devices contain wireless radios which allows them to communicate with

each other using the same connectivity model as the simulation.

While the computer simulation of the robotic routers algorithm is fairly discrete, the physi-

cal implementation is in a continuous environment where the robots can move to an infinite num-

ber of possible locations in a various amounts of time. In order to still utilize the discrete motion

planning algorithm, the original finite set of possible locations are still used but now they are

treated as target locations that the robots need to move towards, as opposed to being the only

places a robot can reside. This simply means that in each time step, a robot has to move to within

a certain distance of one of these locations for it to count as being there. This gives the robots the

freedom of moving between the points in any means necessary, taking as long as needed, with the

algorithm only proceeding when they are close enough to their target locations. In the unknown

user trajectory case, the human user was restrict to only moving between the target locations. The
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time steps can be thought of as steps of the experiment used to synchronized the calculations and

not necessary as the time it takes for each robot to move. This whole process is aimed at providing

a way of using a discrete algorithm in a continuous environment.

Figure 3.4: One of the three Acroname Garcia robots used in the implementation

3.1.4 Challenges

When an algorithm is developed in a computer simulated environment, a lot of assumptions

are made to simplify the overall process, especially if they do not pertain to the problem at hand.

An excellent example of this is how to control the robots.

3.1.4.1 Route Finding

The algorithms presented in this paper are centralized, in the sense that, a single algorithm

decides on the motion of all robots and is run on a single computer (which also acts as the base

station). However, due to the dynamic nature of the system (especially in the adversarial case),

the base-station must send motion commands to the robots. The base station has direct access

to only the robots that are within its communication range. Therefore, to control a robot outside

of this range, the base station must send a message through several intermediate robots to the

desired robot since there is no global wireless coverage. The problem then becomes a matter of

determining which robots to route the message through. This can be increasingly complex as the

robots are constantly moving, causing one route to work at the current time step but not work at

the next.
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Two solutions to this problem were implemented: one which uses broadcasting and Dijk-

stra’s algorithm and one which uses the properties of the physical environment. The first solution

involves using a broadcasting or flooding mechanism to retrieve all of the robots’ locations, then

generating a connectivity graph with this information. With this graph and a shortest path algo-

rithm, such as Dijkstra’s algorithm, valid paths can be calculated to all of the nodes starting from

the base station. This solution is explained in detail in Section 3.2.4. The second solution is to

use the broadcasted messages themselves as a way of finding paths. This is done by having each

message track the nodes that it passes through on its way to the final destination. When the final

node receives this message, it will know exactly which path the message took and can send a reply

back along the same path. This solution is explained in Section 3.2.7.

3.1.4.2 Localization

Another problem that comes up is how to accurately maintain the positions of the robots.

In the simulation, the location information for all robots is stored on a single computer so it can

be easily and accurately accessed by the motion planning algorithm. In the real world, each robot

has its own odometer and this information has to be propagated to the base station at each time

step, regardless of how the robots are organized and who can communicate with each other.

Two techniques were developed to solve this challenge. The first technique is to still store

the robots’ positions on the base station and only send the actual move commands to the robots.

The second technique is to store the positions on the robots but use a broadcasting technique to

retrieve this information when needed. A detailed discussion of this problem and its solutions are

presented in Section 3.2.5.

3.1.4.3 Connectivity

In the simulation, the environment is idealized in that there is a clear cutoff between when

two robots can communicate with each other given a particular connectivity model. However, this

is rarely the case in a physical environment where communication channels can routinely work one

minute but fail the next, especially if the robots are at the limits of their communication range. Ob-

stacles in the simulated environment always have a predictable effect on communication devices

but in reality, they often have an unpredictable dampening effect on wireless signals. The con-

nectivity issues that are faced by the system are explained in detail in Section 3.2.3. Section 3.2.8

explains how intermittent network connections can cause problems on the overall system.
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3.2 Systems

3.2.1 Overview

The physical components used in this robotic routers system comprise of several identical

mobile robots (Figure 3.4) used for the user and mobile routers, and a personal laptop computer

as the base station. All of these devices, which will also be referred to as nodes since they reside

in the same network, use range limited wireless radios with identical capabilities to communicate

with one another. The robots are allowed to move in any direction at a constant speed with the

laptop computer always remaining stationary. The robotic router algorithm from [14] and all of

the necessary processing is centralized at the base station where the robot tracking and movement

commands are also conducted. Each of the robots, as well as the base station, run custom net-

working applications so that messages can be routed throughout the network in both a centralized

and distributed manner.

Although this system can run in any environment, the one used is the rectangular environ-

ment with the two rectangle obstacles as shown in Figure 3.9. The overall system can support both

of the real world user motion models: the known trajectory model and the adversarial trajectory

model. In the known trajectory model, the system moves all of the robots at the same time in ac-

cordance with the pre-computed trajectories based on the known user trajectory. In the adversarial

trajectory model, the user is a human walking around with a laptop computer. The user’s trajectory

is not known to the system (but user reports its next location before each movement). The system

is responsible for using the algorithm from [14] to move the mobile robots to the best location in

order to maintain the longest connectivity duration.

The implementation presented in this paper can be used as a generic framework to test

other algorithms in the future. The various applications created can easily be extended to expand

on existing functionality.

3.2.2 Ad-hoc Network

All of the nodes are equipped with wireless radios that allow for communication and data

transfer. When two nodes are in communication range of each other, a data connection can be

established between them. This allows the robots to transfer routing data, commands and other

information. Since this system is designed to provide and maintain its own wireless coverage,

all of the robots are only allowed to communicate in an ad-hoc manner between pairs of nodes.

However, each node can maintain multiple connections to several different nodes at the same time.

The IEEE 802.11b wireless standard used only allows nodes to exchange data if they are
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directly connected. It does not provide any built-in functionality for establishing multi-hop con-

nections between disconnected nodes by routing data through intermediate nodes. This means that

in order to establish a connection between the user and base station through the mobile routers,

there needs to be a routing system capable of routing data throughout the system.

Connections, Packets and Messages: The framework of the distributed routing system was

created by having all of the robots run identical programs that contain server/client networking

components. These programs allow networking connections to be made between pairs of nodes

and data packets to be transferred between them. If the user and base station are not within

communication range of each other, then using this mechanism, data can be sent between them

by creating connections to the mobile routers. The mobile routers can then create connections

between each other as necessary in order to form a multi-hop path, thereby allowing data to be

sent between the user and base station.

When transferring a data packet between two nodes, an underlying transmission protocol,

TCP, is used. TCP is one of the standard internet protocols for transmitting data and is used to

transfer everything from web pages to e-mails and even files. This protocol transfers data by

first creating a connection between two nodes, transmitting the data, then closing this connection.

UDP, an alternate method of sending data using segmented connectionless packets, is described in

Section 3.3.2.1 where these two protocols are contrasted. However, regardless of the transmission

protocol used, The data packets themselves are formatted as short unidirectional messages sent

one at a time containing commands for a robot to execute. More details on the actual format of

these data packets can be found in Section 3.3.3

As mentioned earlier, when two nodes communicate with each other, the total data being

sent between them is referred to as a data packet. The actual command inside of a packet, such

as the encoding for “turn left”, is referred to as a message. Essentially, a packet is the combined

data from a command along with any administrative data that is required in order to successfully

complete a data transfer from one node to the next. This administrative data usually consists rout-

ing data, characters to signal the end of a data packet or characters to separate different command

parameters.

3.2.3 Connectivity

The connectivity model used in the simulations is more conservative than the actual phys-

ical connectivity. The 802.11b wireless radio used has an estimated range of 38 meters or 124

feet but obstacles, such as the rectangular rooms in the middle of our environment, can reduce this
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range or even completely absorb the signal. To model connectivity, an analytical mathematical

model was created in [14] where connectivity was based on distance with penalties given to con-

nections made through obstacles. This connectivity model is used as the underlying structure in

both the simulation and implemented systems in order to determine if two nodes can talk to each

other from their current positions. Using the same connectivity model maximizes the accuracy of

demonstrating an implementation of the complete robotic routers algorithm.

With this connectivity model, the real world system will use a mathematical look up table

to determine if two robots are allowed to communicate with each other instead of basing it on

the physical environment. The implication is that this method creates a discrepancy between the

network topology the system thinks it has and the real physical network topology. In a scenario

where the mathematical connectivity table is more conservative, this does not present a problem

as it can be justified by allowing robots to only communicate when the wireless signal quality is

above a very high threshold. The downside is that existing physical connections that could be used

are not utilized and this could lead to inefficient networks. However, this does not cause major

connectivity problems.

If the mathematical model does not take into account some part of the environment and

ends up being more relaxed than the physical environment, then major problems can occur since

the system expects two robots to be able to talk to each other when in reality, they cannot.

While it may seem that this problem can easily be solved by simply basing the connectivity

matrix on the physical environment, the reality is that this is not a complete solution. The problem

is the standard assumption of a binary model where nodes either can or cannot talk to each other.

However, in a real world environment, there are often various shares of grey where some messages

periodically may get through while other messages are lost. Sometimes, only parts of a message

will be transmitted while other times, they can arrive in a different order with long delays. As

a result, it can often be very hard to build an accurate network topology because one network

link might exist one second and disappear the next. These unstable network connections and

their consequences are explained more in detail in Section 3.2.8. The implemented robotic router

system uses the mathematical model to determine connectivity but also gives users the option

of determining the physical network topology themselves using a broadcast based path finding

technique (Section 3.2.7).
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3.2.4 Routing

In order to route packets between the user and base, a path through the network must first be

established for the given network topology. Once the base knows the locations of all of the nodes, it

can create a network topology or graph by using the connectivity model to determine which nodes

are close enough to communicate with each other. A shortest path algorithm, such as Dijkstra’s

algorithm, can be run on this graph to create the shortest routes from the base station to all of the

nodes. From here, any information that needs to be transmitted, such as movement commands, can

be sent through these paths to the desired nodes. If any of the nodes move, the shortest paths must

be recalculated as the network topology could have changed. All of these calculations are done

on the base node and when sending packets to a particular node, the transmitted packets carry a

header specifying each node in its path to the destination. The mobile routers are only responsible

for routing the packets they receive and occasionally sending a list of its visible neighbor nodes,

making this implementation a centralized routing system.

3.2.5 Network Localization: Centralized vs. Decentralized

One of the assumptions of the system is that the base station knows the location of all of

the nodes at all times. This can be justified since the mobile robots are controlled by the base,

their locations must be known at all times. For the user, since it is using services provided by

the system, it is reasonable to assume that the user must provide its location to the base station

in return. However, in implementation, this proves to be more difficult as there must be a way

of maintaining each nodes’ location at each time step. This system assumes that each node is

able to keep track of its own location, either with perfect odometer from a given starting position

or a global positioning type system, but does not make any assumptions in where and how this

information is stored or delivered to the base station for route discovery and path finding.

The implementation of the system allows for two different approaches to maintaining each

nodes’ location. The first approach simply stores the position and orientation of each of the nodes

on the base station itself. Initially, the starting locations of the nodes are set in the base station

and with each mobile node movement, the system updates the local position values of that node.

Ideally, with a perfect network and no outside interferences, the nodes location kept on the base

station would be identical to its position as kept on the node itself and thus, its real location. This is

the simpler and more efficient of the two approaches as only move commands are passed between

the base station and the mobile robots through the network.

The second approach can be thought of as a more distributed system where each node is
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responsible for keeping track of its own location and orientation and the base station must poll the

nodes for their latest positions before each time step. Storing the location of each node on itself

has several advantages over storing this information on the base station:

1. It is more accurate because all of the location data is updated at each time step right before

calculations are done.

2. It is more flexible because the robots do not have to update the base station whenever minor

adjustments are made to its position between time steps.

3. It is more scalable because it allows other parties to control robots as necessary and prevent

errors from out of sync data. One example of this is that multiple bases can now control the

same set of robots.

4. It is less error prone because there is a much tighter connection between the robot’s location

information, which is stored on the robot, and its physical movement mechanism, also lo-

cated on the robot. This causes less problems then if this information is kept separate given

the greater likelihood of having unstable network connections.

Keeping the location data stored on the robots removes the discrepancy that might occur

between the robot position values on the base station and the actual robot location. However,

the advantage of this method also contributes to its disadvantage as well. Updating each node’s

location at every time step allows for a more accurate system but this also increases the amount of

network traffic on the network, especially if broadcasting (Section 3.2.6) is used.

One simple way of combining the advantages of these two approaches is to use both of them

at the same time. By keeping a copy of each nodes’ position on the base station and periodically

polling each node, a compensation can be easily made between the efficiency of the first method

and the accuracy and flexibility of the second one.

3.2.6 Broadcasting: Decentralized Network Localization

In the second localization approach, the base station must poll all of the nodes for their

locations without knowing the network topology and which nodes can communicate with each

other. The approach used to solve this problem is to broadcast a message throughout the network,

asking each robot to report its location to the base station. This can also be thought of as flooding

the entire network with a single message. This is implemented in the intuitive way by enclosing

this message in a packet and having each node forward this packet to all of its neighbors. Each
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broadcast message is also assigned a unique ID and all packets carrying this message would use

the same ID in their headers. Each node would only process and transmit the first packet it receives

for a particular ID and would proceed to ignore any further packets of the same ID, thereby pre-

venting a situation where the same packet is transmitted throughout the network indefinitely. The

broadcast message ID must be a globally unique ID. One simple approach is to use a combination

of the initial broadcasting node’s ID and local time.

3.2.7 Broadcast Based Path Finding

After a particular node receives a broadcasted message, such as “send your location to the

base station”, it must be able to figure out how to reply back if necessary. Since the node also

does not know the topology of the network, it faces the problem of determining how to get a

message to a particular node, in this case back to the base station. Depending on the stability of

the network, this can be accomplished in two ways. The first way is to simply reply back using the

same broadcast mechanism as discussed in Section 3.2.6. This is a fairly inefficient method since

it creates a lot of network traffic with sending even a single message but there are times when this

is the only choice, as explained in Section 3.2.8. Another method is to send the message through

the same exact path the broadcasted message took to arrive at the node. While the broadcasted

message may not have taken the shortest path, sending a message along a single path is far more

efficient than flooding a network with it.

The broadcast packets can be modified so that each node adds its unique ID to the footer

of any packet that it will retransmit to its neighbors. Through this, whenever a node receives a

broadcast packet, it can extract the exact path the packet took to reach that particular node. An

application of this is when the base station must retrieve the location of all of the nodes in the

network. First, the base station sends out a broadcast message throughout the network, which will

be received by every node, telling them to reply back with their locations. Each node can then use

the path encoded in each of the broadcasted packet to send its location back to the base station.

Even though neither the base station nor any of the nodes know the overall network topology, all

of the necessary information is transmitted to the desired recipients.

3.2.8 Unstable Network Environments

The methods described in Sections 3.2.4, 3.2.5, 3.2.6 and 3.2.7 primarily deal with an en-

vironment where the network topology is ideal and stable. This means that physical connectivity

can be accurately predicted based on a nodes’ location with respect to the obstacles and distance

to neighboring nodes. However, in reality, there are often times when this does not hold true.
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This is one of the reasons why a more conservative connectivity model was created to use for path

and route calculations (Section 3.2.3) even though the system is capable of using properties of the

physical environment (Sections 3.2.6 and 3.2.7). In these cases, sometimes nodes can talk to each

other to pass a message but at the next second, the connection breaks even when the environment

does not change. Other times, a message might reach a node after a long delay, well after shortest

path calculations are done. These intermittent network connections can cause major problems for

broadcasting and path finding functions which must depend on a reliable and consistent distinction

between whether two nodes can or cannot talk to each other.

In broadcasting and path finding, each node only processes the first broadcast message it

receives and uses that message’s path to reply back to the initial broadcasting node as needed.

However, if the network connections are unstable, a situation can occur where a message makes it

through to a node over a weak connection. Since the node will discard any other packets with the

same message ID, it will ignore a packet which arrived through a longer but stronger path through

the network. If the initial weak connection can no longer support data transfer, then the node is

stuck in a situation where its only reply path does not work and it is too late to extract paths from

any of the duplicate packets. One potential method of solving this problem is to have every single

communication sent on the network be sent through the broadcasting method. While this method

is highly inefficient, it is more reliable in an environment where physical network connectivity

is very unstable. Another potential method is to store all of the paths from all of the duplicate

broadcast messages that arrive at each node and try them one at a time if any fail. However, this

introduces the problem of how to determine if a path is broken and when to try the next path.

These problems are some of the ones which still need to be resolved and accounted for by

the overall system. Our current solution essentially relies on creating a stable network within a

network containing unstable network connections. While these particular problems and potential

solutions are not specifically addressed in this implementation, the current system does provide

the underlying mechanism to develop advanced techniques to overcome these obstacles.

3.3 Implementation

3.3.1 Overview

The system, as described in Section 3.2, was successfully implemented using mobile robots

and personal laptop computers. All of these devices used standard wireless network adapters

running in ad-hoc mode to form a wireless network. The same environment that [14] used in

simulation was used to test the implemented system and run the experiments. Custom applications
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were developed and deployed onto all of the devices to add the network routing and message

broadcasting functionalities (Sections 3.2.4 and 3.2.6) since they were not provided by the inherent

underlying wireless systems.

As defined previously, the term node is used to refer to the individual devices that make up

the overall network, whether it is the user, a mobile router or the base station. If a node runs an

instance of the custom routing application, then they can be labeled as a host because they are now

hosting the networking components essential to the functionality of the system. Since all of the

nodes in the network must also run this networking application, the terms node and host can be

used interchangeably when referring to devices in the network.

3.3.1.1 Hardware

For the implementation and experiments, Acroname Garcia mobile robots equipped with

ARM/risk PCs running Linux (Figure 3.4) were used to represent the two mobile routers and

the user in the known user trajectory case. In the unknown user trajectory case, the user had a

personal laptop running Ubuntu. An Apple Macbook personal laptop running Mac OS X was

used as the base station, which also held the centralize network control application. All of these

devices used 802.11b wireless adapters to establish TCP network connections in order to transmit

data back and forth. The robots were programmed to accept move commands using primitives

and can move forwards and backwards at a constant velocity, as well as rotate in place. The user

was allowed to make any possible moves but must update his new location on his computer. The

laptop was kept stationary at the designated base station location.

3.3.1.2 Software

A custom C/C++ application named Mercury (Section 3.4.2) was created to run on the

robots and user laptop to add routing and broadcasting functionality while a separate Java appli-

cation called Jupiter (Section 3.4.3) ran on the base station to control the overall network. Jupiter

provides the base station with the same capabilities as Mercury in addition to the abilities of route

calculations and path finding functions. Since it is used to control the network, it also has a

graphical user interface to visualize the location of the nodes within the environment (Figure 3.7).

Another Java module, which was later integrated into Jupiter, was created to step through the ex-

periments from [14] and direct each robot to their target locations. This module is titled Neptune

and is explained in Section 3.4.4. Although these applications were written in different languages,

they are able to communicate with each other by transmitting data using standard TCP/IP sockets

in a client and server programming model.
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3.3.1.3 Client and Server

The client and server programming model is simply a nomenclature used to assign names

based on the roles that devices take when sending information. As used in this thesis, the term

client refers to the device that first initiates a connection and the server is the device that waits

for an incoming connection. In cases where information is sent without first establishing a con-

nection, the client is the sender and the server is the receiver. If a device can accept an incoming

connections as well as initiate outgoing connections with other devices, then its individual net-

working components are named based on their functionalities. Hence, that device would have a

server component to handle connections and a client component to initiate connections.

3.3.2 Client, Server and TCP Connections

The two main programs, Mercury and Jupiter, contain both the client and server compo-

nents. This allows them to initiate connections with neighboring nodes as well as listen for any

neighbors who would want to connect with them. The server components of programs are also

multi-threaded so they can open multiple connections at the same time if necessary.

3.3.2.1 TCP/IP and Sockets

Once two nodes are close enough and there is a strong wireless connection between them,

they can start establishing network connections and transmitting data to each other. The Mercury

and Jupiter applications run on top of the operating system’s network stack in the user space of

their respective hosts. They can be thought of as user applications, such as a web browser, which

uses the underlying operating system to take care of the actual networking functions. Currently,

both of these applications use the TCP internet protocol where a connection between the two hosts

must be established first before data can be transfered. The alternative would be to use the UDP

internet protocol where data can be sent in segmented packets without the need to first create

connections. A comparison between the two protocols is provided in Section 3.3.2.1 and future

work with implementing UDP is explained in Section 3.6.2.

TCP vs UDP For transmitting data between two network devices using the standard TCP/IP

data model, there are two widely used protocols, TCP and UDP.

TCP is a stream oriented connection protocol where two devices transfer data by forming

and maintaining a direct network connection between them. This connection model favors relia-

bility over timely delivery and is the standard transmission method for the applications such as the

World Wide Web, E-mail, File Transfer Protocol and Secure Shell. The TCP network connection
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is reliable in that any missing or timed out data packets will be resent as needed and any success-

fully received data is acknowledged. From the view of an application, data is sent and received

as a continuous stream and is guaranteed to arrive exactly as it is sent. Once a TCP connection is

established, data can be transfered in either direction from both sides, regardless of which party

first initiated the connection. The basic concept of TCP connections can be roughly thought of as

calling another person and speaking to them on a telephone. Anything that one party says into the

phone will come out in the same exact way on the other end and both parties can speak at the same

time without breaks in the service.

UDP is a packet or message based protocol and focuses on a lightweight timely delivery

mechanism instead of the heavier but reliable TCP connection. It’s applications include the Do-

main Name System (DNS), streaming media such as Voice over IP (VoIP) and online games.

Instead of forming direct connections to stream data as TCP does, data is segmented and sent as

individual packets in one direction from one host to another. There is no ordering or reliability

mechanism so the data packets can arrive in any order or possibly not arrive at all. There is no

acknowledgment or retransmission of packets so once a host sends out data, it has no way of

knowing if it ever arrived at the destination. UDP is a more lightweight protocol compared to

TCP because there is no overhead for the reliability and ordering mechanisms. Whereas TCP is

analogous to a telephone call, the basic UDP concept can be thought of as mailing several letters

using the postal service. The information sent in the letters travel only in one direction and there

is no guarantee to which letters will actually arrive at the destination and their arrival order.

Choice of TCP TCP was first used instead of UDP as a way of easily determining which hosts

can talk to each other. TCP connections are only established if hosts can communicate with

each other, otherwise the operating system will alert the user application of a failed connection.

Since all of the nodes are assumed to be on and running the necessary routing programs, if a

connection attempt failed, then that means the specified node is not reachable and outside of

communication range. However, if a connection can be made, then that node is reachable and

thus, within communication distance. Therefore, an easy way of determining which nodes are

reachable is to simply go through a list containing the addresses of all of the nodes in the network

and attempt to connect to every single one of them. Since a TCP connection attempt will either

succeed or fail almost immediately, when the node reaches the end of the list, it will know precisely

which nodes in the network are in communication distance. In contrast, if UDP was used, then

the procedure would be more complicated and prone to error. A node would have to send a UDP

packet to each of the nodes and any node in range would have to reply back with another UDP
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packet or through a TCP connection. Since UDP packets are sent without acknowledgments, the

initial node would have to send out all the UDP packets at the same time and wait for each node’s

reply packet to come in or time out. Also, because there is no reliability mechanism, if a UDP

packet is lost then a node could be mistakenly marked as out of range when it is actually reachable.

As more functionalities and features were added to the applications, they were built on top

of the TCP connection framework. However, some of these features, such as the broadcasting

messages, could see a benefit if they were sent using UDP instead. Also, an UDP server could

run along side of a TCP server at the same time using the same port without complications. These

features and extensions are explained more in depth in Section 3.6.2.

3.3.2.2 TCP Client

The TCP client Application Programming Interface (API) for connecting to another host’s

server is very simple and requires only the network address and port number of the destination.

In C/C++, a socket is first opened to specifically support TCP connections. This socket is then

passed into a connect function, along with the network address and port number of the remote

server. If the return value of the connect function indicates a successful connection, then the

socket becomes valid and is open for reading and writing data. Otherwise, the socket is closed

and it is concluded that the destination node cannot be reached from the current node. In Java, the

same procedure occurs only objects are used to represent the sockets, input and output streams to

follow Java’s Object Oriented Programming language model. Code for the client interfaces can be

found in Appendix B.1 in C and Appendix B.2 in Java.

3.3.2.3 TCP Server

A similar procedure is used to set up a TCP server and like the TCP client, the overall

process is almost identical between C/C++ and Java. In C/C++, a socket is created and a bind

function is called to bind this socket to a particular port number on the server host. Then, a function

is called which places this socket in a listening mode and the current server thread sleeps while

waiting for a client to connect. Once a client has connected, an accept function returns a socket

that represents the server’s end of the new TCP connection with the client. This socket can then

be used to send or receive any data from the client. In Java, the same process occurs only using

Java objects instead of procedural C method calls. Code for the server interfaces can be found in

Appendix B.3 in C and Appendix B.4 in Java.

Since the thread that runs the TCP server sleeps while waiting for a client to connect, this

essentially puts the application in a state where it can only perform tasks that are in response to
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commands from remote clients. To allow the application to conduct other tasks, the server com-

ponent must run in its own thread. This way, an application can wait to accept a client connection

while still commanding a robot to move or even connecting to another node simultaneously. Ad-

ditionally, a server can also start its own thread to further improve performance. Whenever a

client connects to a server, instead of having the original server thread handle the connection, the

server can create a child thread and hand off the task of processing the client connection to this

new thread. This allows each application to handle multiple connections at the same time, greatly

increasing its efficiency and capacity for multi-tasking and expansion. This also allows the human

controller to enter commands into Mercury through the terminal or the graphical user interface

of Jupiter without disrupting their background network routing and broadcasting responsibilities.

Both of the C/C++ and Java servers follow this approach.

3.3.3 Packet Format

Whenever information is transfered, it must be encoded in a format that is standard through-

out the entire system. In this implementation, commands are called messages and encoded into

packets before they are sent to hosts.

Each message is defined as a string of characters, numbers and symbols that commands a

host to perform a particular action. Messages can range from telling the robot to move one step

forward, have it broadcast its own location or even print a list of received message ID’s. In order to

transmit these messages, headers and footers must be added to include information such as which

host to route the message through or the broadcast ID. After this information has been added to

a particular message, the combined data is sent through an established network connection in the

case of using the TCP protocol. This data that will be ultimately transmitted, including headers

and footers, will be referred to as a packet.

3.3.3.1 Layering

The structure of the packets and the workflow for how to create and format packets from

messages is based on the multi-layered philosophy used in the TCP/IP and OSI network models.

A figure of the overall message can be seen in Figure 3.5.

The first and innermost layer consists of the actual message itself. The core of this mes-

sage is comprised of a command string and any necessary parameters, all separated by a special

character (#). An example of a command would be crc with the parameters of 2 and 5.0 which

would tell a robot to turn five degrees counter-clockwise. This command would be encoded into a

message represented as crc#2#5.0. A full table of commands is given in Appendix A.
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Figure 3.5: The format for a data packet. The encoded message (a move command) with
separation characters is in the middle of the data packet. Before the message is
the routing header, which in this case is a broadcast ID. At the very end is an end
of data packet character.

The second layer of processing involves adding routing information as a message header.

For messages that are routed, the header is a series of alphabetical characters is used to designate

the ID’s of all of the nodes along the desired path through the network. Continuing with the

previous example, if the control robot command has to be routed through nodes with ID’s of 3, 2

and 5, the second layer would add CBE to the message, making the packet: CBE|crc#2#5.0. To

keep track of how far a packet has progressed in its path, the characters are converted from upper

case to lower case to mark off the nodes that have processed the packet. This also marks the node

the message needs to be routed to. When the example message arrives at node 2, it will look like

cbE|crc#2#5.0. The E is extracted and converted to lowercase as node 2 will try to send the

packet (cbe|crc#2#5.0) to the final destination of node 5. For messages to be broadcasted, the

header becomes a globally unique numeric ID (e.g. 4815162342|crc#2#5.0). This ID can

be a random number with a large enough range to prevent repeating or a number created using the

source node’s ID and time stamp. This allows nodes to discard messages with ID’s that have been

processed already, ensuring that the same message will not be sent around the network forever.

This header is separated from the command by another separation character ( | ) that is different

from the one used between commands and parameters. This approach greatly simplifies the task

of routing, broadcasting and processing packets because a node only needs to process the routing

header to determine the next step it should take.

The final and outermost layer of the overall data sending and receiving process involves

adding a special character at the end of each packet to signify the end of the data. This character

($) is also used as a signal to tell the operating system when to send the transmission buffer through

the network and when to return the receiving data buffer to the user application. Using the previous

example, the entire data that is received at node 5 would be: cbe|crc#2#5.0$. Without this

character, any data that is sent or received could be kept in the system buffers for long periods
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of time before being processed. These characters are added and removed at the lowest level of

processing, which is completely transparent to the layers above.

3.3.3.2 Sending a Message

Sending a message is done very simply by first creating a message in the first layer, passing

it down to the second layer where the routing information is added and finally, sending it with

the end of packet character added in the last layer. If the message is to be broadcasted, a new

broadcast ID is generated and added as the routing information in the second layer. If the message

is designated to be sent to a single node and requires routing, then the process is a little more

complicated. Whenever the path finding (Section 3.2.7) or the route discovery algorithm (Sec-

tions 3.2.4) runs, the resulting paths are stored for each node after they are calculated. If the final

destination node has one of these paths then it is used as the routing information in the second

layer. However, if there is no path stored, then application attempts to send the message directly

to the final destination node without any routing information.

3.3.3.3 Receiving a Packet

When a packet arrives at a node, the first job is to determine whether this packet should

be broadcasted to the node’s neighbors, routed to the next node in the packet path or if it should

be processed. Since routing information always use alphabetical characters and broadcast ID’s

only contain numeric characters, a simple test of the routing layer substring will easily determine

what to do with the packet. If it is a broadcast packet and that particular broadcast ID hasn’t been

received yet, then everything is kept the same and the packet is sent to all of the node’s neighbors.

If the broadcast ID has been received before, then the packet is simply ignored. Should the packet

contain routing information, then the next node in the packet’s path is extracted and the packet

is forwarded to that node. For any packets where there are no remaining nodes in the path or

contain no routing information, then the receiving node assumes that the packet has reached its

final destination and the message is extracted and processed.

3.4 Code

3.4.1 Overview

Two different applications were created to add the routing and broadcasting functionality

to the networked robot system. The first application, Mercury, is written in C and C++ and runs

on each of the Garcia robots and the user laptop in a Linux environment. It is the distributed

workhorse of the system and is responsible for routing and broadcasting messages throughout the
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network as well as actually moving and controlling the robots. The second application, Jupiter,

was created as the framework for controlling and interacting with the entire robotic network sys-

tem. It is written in Java and runs on the personal laptop that acts as the base station. Although for

this experiment it ran on Apple’s Mac OS X operating system, Java is cross platform compatible

so any platform can serve as a host for the Jupiter application. This application is where a human

user would control the robots through its graphical user interface and also where the shortest path

routes and network topology are calcaulated. A separate standalone Java module, Neptune, was

later developed to implement the strategy used in both the known and unknown user trajectory

cases by reading files and determining the user and mobile router locations at each time step.

Later on, this module would be integrated into Jupiter so that it can take advantage of the already

created network connection framework as detailed in Section 3.4.4.1.

3.4.1.1 Input Files

All of these applications rely on a plain text file that contains a list of every single node in

the network and their respective network addresses. This file is read in the initialization portion

of the Jupiter and Mercury applications and each node is assigned an unique integer ID to be used

for routing and node identification. There are additional files which are used by each application

and are explained in their respective sections.

3.4.2 Mercury

Mercury is a C/C++ application that runs on all of the mobile robots as the actual distributed

networking framework responsible for routing and broadcasting messages throughout the network.

It is also responsible for accepting and executing any robot move or turn commands. It has a

command line interface where users can enter text commands to be executed sequentially one

at a time, depicted in Figure 3.6 and Appendix A. A separate TCP server thread runs in the

background, listening for any incoming network connections to be processed in newly created

child threads.

Mercury is capable of storing the coordinates and heading of its host as well as retrieve this

information from any other nodes. Currently, each node is able to obtain the status and location

of all of the nodes that are up to two hops away and store this information in a visibility graph.

Mercury also has the abilities to create, route and broadcast any messages using the techniques

presented in Sections 3.2.4 and 3.2.6. Lastly, Mercury can receive robot control messages, such

as moving a certain distance forward or turning a specific amount, and command the physical

hardware to perform these actions. Any robot move actions would also change the internally
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Figure 3.6: Mercury a terminal application that runs on the user laptop and on all of the
mobile robots. It accepts commands from both its server component and its
command line interface. For testing, several instances can ran at the same time
on a single machine using different port numbers, as seen in the figure (Four
instances running on ports 7890 to 7893).

stored location and heading variables. Additionally, these locally stored variables can be changed

manually through the command line interface, as used in the unknown user trajectory experiment

by the human user.

3.4.2.1 Classes and Cross Compiling

Mercury is primarily written in C++ with the code divided into several classes of distinct

functionalities in an object oriented design. The multi-threading code and network code are C

procedural functions, part of the POSIX standards.

Mercury is cross-compiled on the development platform using a compiler that produces ma-

chine code specific to the Garcia robot’s ARM processor and runtime environment. When compil-

ing this execuatable, a RobotARM class is used as an interface between the Mercury application

and the already compiled libraries that control the physical movements of the robot. However, it is

often easier to debug and test Mercury on the development platform so a class called Roboti386

was created. This class contains all of the same function calls as the RobotARM class but does not

contain any of the references to the robot control libraries since they are only compatible with the
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ARM compiler. By using the Roboti386 class in place of the RobotARM class and changing

the server’s binding port number, several instances of the Mercury application can be run at the

same time on a single development platform, as seen in Figure 3.6. This also allows the Mercury

application to run on nodes that are simply standard laptop computers.

3.4.3 Jupiter

This application is used to control the robots, develop the shortest paths in the network and

display the locations, status and paths of all of nodes. In the experiments, it was used to visualize

each node’s location as well a visibility graph that shows which nodes could talk to each other as

seen in the top image of Figure 3.7. While the Mercury application runs on each of the nodes and

essentially forms the actual robotic network system, this application is the central control interface

for the entire distributed system.

Figure 3.7: The Jupiter control application. It contains a frame with the floor plan of the en-
vironment that shows the current status and locations of the nodes. The control
frame lists the nodes and their properties in a table as well as the various buttons
to issue commands.

The Jupiter application is capable of retrieving the location and status of any node that it

can talk to by connecting to their Mercury instance. Its networking component is also capable of

creating, routing and broadcasting messages just like its C/C++ counterpart in Mercury. Jupiter is

a multi-threaded application, with separate threads for the main server instance that creates new
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child threads for incoming network connections.

3.4.3.1 Model-View-Controller Design (MVC)

To improve compatibility and future expansions, the Jupiter and Neptune applications were

created following a Model-View-Controller (MVC) software design pattern. A design pattern is a

development template or guideline that is used to help create better programs, both in functionality

and developmental design. By following some of the commonly used software design patterns

in the computer science industry, programs can be written more cleanly and structured so that

different parts and modules can be reused, even in other applications. This saves precious time in

the development and maintenance phase of the software life cycle. Since design patterns typically

call for modular components and reusable classes and objects, they are used mostly for object

oriented languages such as C++ and Java.

The Model-View-Controller is a design pattern that is used as an overall template for struc-

turing an entire application. The pattern calls for a separation of an application into three compo-

nents: the model, view and controller. These components are created independent of each other

and interact with one another through common interfaces. One of the benefits of this is that it

allows several different implementations of the same component to be used at the same time since

they all must share the same interface. Another benefit is that it allows developers to create com-

ponents in parallel once all of the common interfaces have been planned. An example of this is

the Neptune module integration, which is explained in Section 3.4.4.1.

Model The model component consists of the classes that encapsulate and interact with the data.

This component is responsible for retrieving data from the environment or a data storage location

and formatting it so that it can be used in the rest of the application. Essentially, the model would

provide a front-end for interacting with the application’s data source. It would take care of any data

mapping or conversions between the data representation the application uses, such as Java objects,

and the format of the data storage, such as text files or database entries. All of these functions are

transparent to the rest of the application as they only have access to the shared common interface.

In the case of the robotic router system, the data for the overall system is the location and

status of the robots. A class called GraphModelwas created to interact with the robotic network.

This class is responsible for sending update broadcasts to the robots and storing their responses

in an object array. The rest of the application would have access to this array and interact with

the robot network by calling generic functions such as UpdateStatus or MoveRobot. The

actual code for sending and processing the actual messages to and from the robots is transparent
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and hidden from the rest of the application.

View The view component is responsible for displaying the data in the model. This can mean

displaying the data as a graphical format for a human user, displaying it for another computer

system or even just writing it to a text file for processing later. The view component usually has

a reference to the models of an application and will retrieved the latest data before formating and

displaying it.

The view component has two different implementations in the robotic routers system. The

first implementation is a class called ImageView. This class takes a robot’s information and

status from the GraphModel class and displays it in a graphical format over the floorplan of

the environment, as seen in the top figure of Figure 3.7. The robots are drawn as triangles in

the environment representing their physical locations and in colors representing their operational

status. If any of the robots are visible to each other, a dark gray line is drawn connecting them.

The second view implementation is a class called TableView. Whereas ImageView

displays the robots in a graphical fashion, TableView displays the robots in a table that contains

a column for each of the robot’s property, such as name, ID, location, and operational status. This

view is show in the bottom figure of Figure 3.7.

Controller The controller is a class that holds the application together because it contains the

actual application work flow and controls the various views and models that a program might

have. Its responsibilities can range from running the business logic to manipulating data by calling

functions in the model class or even changing display options in the view classes. This is the class

that will determine the set of actions to perform when it receives a command from either a human

user or a remote client. If the application needs to add or remove data, this component will call

the necessary methods in the model component then proceed to tell the view component to update

its interface to display the newest data.

In the Jupiter application, the main class Jupiter is the controller component of the

system. It contains logic which processes each command that arrives and determines which model

or view functions to call. It also interacts with the network classes responsible for running the

TCP server and the classes that provide a graphical user interface to the human users.

3.4.3.2 Listeners

Listeners is a design pattern which provides an easy way of having several classes update

themselves if their common dependent class changes. An example of how this works in the Model-



52

View-Controller design pattern is the relationship between the model component and the view

component. The view component is designed to retrieve and display the latest data from the model

component but retrieving and formating the data for display can be time consuming. Therefore,

the view component only retrieves data after the model’s data has been changed since the last

display. The listener pattern provides an easy way of notifying the view component anytime the

model component has been changed.

Listeners work by having the model class keep an array of references to all of the view

classes that would like to be notified when the model changes. An example of this array can be

seen in Listing 3.1 on Line 4. The view class all inherit an common interface of functions and

if they want to listen to a model they pass a reference of themselves to the model’s add listener

function (Listing 3.1, Line 7). When the model is updated, it goes through its list of views and

calls a function common to all of the views referenced in this array (Listing 3.1, Line 19). In

each view class, this common interface function is written to act as a flag, so whenever it is call,

the view class knows that the data in the model has changed so it must retrieve the latest data set

(Listing 3.1, Line 29).

1 // A Model class which other View classes listen to for the latest →

data

2 public class GraphModel {

3 // Array of objects that want to listen to this model

4 private List<GraphModelListener> graphListeners = new ArrayList<→

GraphModelListener>();

5 ...

6 //add an object to the list of listeners

7 public void addGraphModelListener(GraphModelListener l) {

8 graphListeners.add(l);

9 }

11 //remove a listener from the list of listeners

12 public void removeGraphGraphModelListener(GraphModelListener l) {

13 graphListeners.remove(l);

14 }

15 // go through and run the notifyGraphChange function

16 public void notifyListeners() {

17 for (GraphModelListener listener : graphListeners) {
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18 // do something to each listeners

19 listener.notifyGraphChange();

20 }

21 }

22 ...

23 }

25 // A View class which listens to the Model class

26 public class ImageView implements GraphModelListener {

27 ...

28 // called when graph model is changed

29 public void notifyGraphChange() {

30 // get the newest data and repaint the image

31 getDataFromModel();

32 repaint();

33 }

34 ...

35 }

Listing 3.1: Snips of source code that shows the Listener design pattern. The ImageView
class is a listener of the GraphModel class.

3.4.3.3 Integration

Integration of these classes together in Jupiter is straightforward. The Jupiter class is

the controller and has references to the model and view instances. These instances are created

when the program starts up and all of the view classes are added as listeners to the model class.

The model class is populated with the names and addresses of all of the nodes in the network

from a local file and a separate thread is started for a server class for accepting incoming TCP

connections. Lastly, the graphical user interface is laid out and displayed to the user, marking the

end of the initialization process, and making Jupiter ready for user and network command input.

3.4.4 Neptune

While Jupiter is the central command for the robotic network and Mercury is the distributed

application that makes up the framework, Neptune is a Java component that runs the actual algo-

rithm and movement strategies presented in [14]. Its job is to determine where each of the robots

should move to depending on their current location and experiment scenario. During initialization,

it reads a file containing the locations of the robots at each time step for the known user trajectory
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case and a table to calculate the optimal mobile routers locations in the unknown user trajectory

case.

3.4.4.1 Integration into Jupiter

Although the Neptune module can run as a standalone application, it is designed to be inte-

grated into the Jupiter application to take advantage of the already developed network framework.

Therefore, Neptune also follows the Model-View-Controller design pattern so that integration can

be as easy and seemless as possible. Because of this, the Neptune module only contains code

essential to implementing the strategies and algorithms from [14], with its own graphical user in-

terface (Figure 3.8). The networking and robot manipulation functionalities can all be shared from

the Jupiter application.

Figure 3.8: The Neptune control frame. It is used to move the robots or increment the time
step in the experiment. The frame on the bottom is used for the unknown user
trajectory experiment.

One of the benefits of using the Model-View-Controller design pattern is that it organizes

applications into separate components that can be reused or used more than one, even at the same

time. The Jupiter application has its own model, view and controller components while the Nep-

tune module only has view and controller components. Since the MVC design pattern calls for

common interfaces between all of the different components regardless of implementation, it is

very easy to develop the functionality in Jupiter and Neptune separately and then integrate them

together to use the same robotic network. By using the same GraphModel instance for both the

Jupiter application and Neptune module, their controllers can control and interact with the same

robotic network at the same time without conflicts. This also allows all of the different views to
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display the same data simultaneously, regardless of which application they belong to.

3.4.4.2 Known User Trajectory Case

The known user trajectory case is the scenario where the user trajectory is known before

the experiment starts and thus, the paths that the mobile routers need to move can be calculated in

advance. Here, a text file with the locations of all of the robots at each time step is given. Neptune

will read this file and at each step, determine how much to turn and move in order to move each

of the robots to their assigned locations in a particular time step. Once all the of robots are within

an acceptable margin from their target locations, then Neptune will increment the time step and

repeat the procedure again. When a move or turn command needs to be sent, it is passed on to

the GraphModel class, which takes care of the actual message transmission. Once integrated,

both Jupiter or Neptune can be used to retrieve the latest robot locations and this will update all of

the views across both applications simultaneously. The actual algorithm for creating the mobile

robots given a known user trajectory is explained in [14]. Section 3.5.3 details the system’s role

in the known user trajectory experiment.

3.4.4.3 Unknown User Trajectory Case

The unknown user trajectory case is where the user trajectory is not known before the

experiment so the mobile routers must react dynamically at each time step based on the user’s

movements. This is done with a large look up table containing every single possible state of the

experiment. This table can be used to determine the optimal move for the mobile routers give the

current robot locations and next user movement. Once these locations are determined, the rest

of the process would proceed exactly the same as the known trajectory case. The algorithm for

calculating the look up table is presenting in [14]. Section ?? explains the system’s role in the

unknown user trajectory experiment.

3.5 Experiments

3.5.1 Overview

To fully test the algorithm presented in [14], experiments were ran in the real world using

the implemented mobile robotic system. Both the known and unknown user trajectory cases were

tested to see whether the actual implementation would be able to perform as well as the simulated

robots.

As stated in Section 3.1.3.2, the robots were allowed to move anywhere in the continuous

environment. The actual robotic routers algorithm simply produces target locations to designate
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where the robots need to move to in order for the discrete motion planning to work. A figure

showing the starting positions of the robots as seen on the graphical user interface can be seen in

Figure 3.9.

3.5.2 Known User Trajectory

In the experiment, there is a single user robot, two mobile routers and a single base station

(Figure 3.9). The user starts off at location 1 with the mobile routers at locations 40 and 69, and

the base station at location 49, as seen in Figure 3.9. Initially, the user is connected to the base

station through the third mobile router. A dark line highlights the calculated network topology.

Figure 3.9: An overhead view of the environment for the real world implementation experi-
ments with the initial starting positions of all of the nodes. The triangles repre-
sent the actual location of the mobile robots, with the robots containing a blue
center. The circles are their target locations that the motion planning algorithm
produces. The square represents the base station.

The overall experiment proceeded for half an hour which corresponds to 10 steps in which

the user (solid red triangle) moved down towards location 59 (lower left corner) then right to end

on location 55. The second mobile router stayed at location 40 for the duration of the experiment

since the user is never close enough to utilizes its services. However, the third mobile router

moved up to location 11 (top of middle hallway), then to the left as the user moved down in order

to help maintain a user to base connection (second image in Figure 3.11). When the user reached

a location where it can talk to the base directly, then the second mobile router moved to the right

in preparation for when the user will enter that part of the environment (bottom two images in

Figure 3.11). Several steps of the experiment can also be seen in Figure 3.10. The entire user and

mobile router trajectories for the known user trajectory are given in [14].

The responsibility of the implemented mobile robot system is to use the algorithm devel-

oped from [14] and move the user and routers to their respective target locations at each time
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Figure 3.10: These pictures show the time when the connection path of the user is changed
as it moves down the middle of the left hallway. The top row shows the configu-
ration of mobile router network on the Jupiter user interface while the bottom
row shows the corresponding user location at that time step. The left column
shows the final time step when user is connected to base station through the
mobile router. The right column shows the time step right after the direct con-
nection of user to base station is satisfied.

step. Since the locations and connectivity of the robots could potentially change at any time, the

implemented system must also calculate the shortest path to every node at each time step as well.

Initially, the user starts off connected to the mobile routers with the base station aware of the the

starting locations of the robots. The known user trajectory algorithm was then used to calculate

the new user and mobile robot target locations, and the necessary movement commands to move

the robots there from their current locations. A network topology graph was created using the base

station copy of the robots’ positions and the connectivity matrix for the environment. From this

network topology graph, Dijkstra’s algorithm was ran to find the shortest path to all of the nodes

from the base station. Using these paths, the base station sent out move commands to all of the

robots and adjusts their local position variables accordingly. If the robots were at their target loca-

tions after moving, the known user trajectory algorithm incremented the time step and the entire

process repeats with new target locations. However, if the robots were not at their target locations,

then the process repeats continuously to move the robots as much as necessary until they have
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Figure 3.11: This figure shows various stages of the known user trajectory experiment being
conducted using the real world robotic system implementation. The dark lines
show the connectivity paths between the nodes. Initially, the user is connected
through a mobile router but the path changes as the user moves closer to the
base station.
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reached their target locations.

Although the experiment was relatively short, it was enough to demonstrate that the overall

robotic system is capable of moving three robots simultaneously so that they will follow a known

trajectory. It also showed that the system can calculate and successfully hand off the user’s network

connection from a path through a mobile router to being directly connected to the base station.

Overall, this experiment was able to demonstrate that the implemented robotic routers system can

successfully implement the known user trajectory motion planning algorithm.

3.5.3 Unknown User Trajectory

In the adversarial user trajectory experiment, the same environment was used. The mobile

routers were once again represented by the robots, with a personal laptop serving as the base

station (bottom left of Figure 3.12). However, the user was a human holding a laptop instead of

another mobile robot, as in the known user trajectory experiment (bottom right of Figure 3.12).

This new user was allowed to move at the same velocity as the robots but its trajectory was

not known ahead of time to the base station or the mobile routers. For this case, the robotic system

had to retrieve the user’s location at each and every time step (this information was provided by the

user) as well as its next location. The table constructed by unknown user trajectory algorithm was

used to determine the motion strategies of robotic router network. By treating the user’s steps as

adversarial steps and picking motion strategies based on this assumption, it ensures a guaranteed

optimal performance.

In the experiment, the user first started off at location 16 (in the top hallway) with the mobile

routers and base station all at location 49 (Figure 3.12 and top image of Figure 3.15). From here,

the user proceeded to move right to the corner of hallway, ending at location 27 (top right corner).

Initially, the mobile routers did not move because the user was still in range of the base station.

However, once the user moved to the limits of its communication range, the first mobile router

started to move up from location 49 to 65 (bottom of middle hallway) as seen in Figure 3.13. This

movement ensured that the user can still talk to the base station by using a robot to relay messages.

As the user continued to move right, the first mobile router also continued to move up, using itself

to maintain the user to base network connection. Once this mobile router reached location 11 (top

of middle hallway), it stopped moving because the user was now at location 22 (right side of top

hallway) and will remain in communication range regardless of its next movement (third image

of Figure 3.15). As the user continued to move left while at the same time, the mobile router

remained stationary at location 11. However, once the user reached location 27 (top right corner),
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Figure 3.12: These pictures show the initial configuration of the mobile router network. In
this experiment, the mobile router network keeps the connectivity of an un-
known user (laptop) who requests wireless connectivity and sends acknowledg-
ment of its initial location and moving direction in each time step. The top left
figure shows the Jupiter interface, the top right figure shows the message sent
from user, the bottom left figure shows the robots and base station, and the
bottom right figure shows the user.

the mobile router started to move to the left from location 11 to 12. This was in response to the

user reaching the end of the hallway where it will start to lose connectivity if it started to move

down towards location 33 (bottom right corner). As a result, the first mobile router started to move

left to help maintain the user to base station connectivity (last image of Figure 3.15). The final

configuration of the experiment can be seen in Figure 3.14.

The mobile router system’s role in the adversarial user trajectory experiment is similar to

its role in the known user trajectory experiment. Once again, at each time step, the base station

must use its locally stored robot position to calculate the best paths to use to communicate with

the robots. However, the major difference is that previously, the base station knew the movements

of all of the robots and could rely on using and incrementing the locally stored position variables

to calculate the necessary network topology for the next step. In the adversarial user trajectory

case, the base station did not know the user’s movements and thus, must be able to retrieve this

information before it can determine the network topology for the next step. This is a case where
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Figure 3.13: These pictures show the second step of the user. The user continues his move-
ment in the right direction (the input r shown in top right figure). To keep him
connected, the mobile router moves one step forward. The mobile router net-
work maximizes the connection time by choosing the configuration where the
connection time of an adversarial user is maximized.

the system needs to be able to retrieve position location variables stored on the robots as explained

in Section 3.2.5. In the experiment, the base station used the current paths that were generated

to ask the user for its next location. The user then responded by sending a message back through

the same path to the base station and this information was used to generate the network topology

for the next step. This procedure can also be used to retrieve the latest positions from the mobile

routers as well.

From this second experiment, the system clearly demonstrated the ability to react dynami-

cally to an unknown user trajectory. It showed that it is able to retrieve the user’s current and next

location and using this information, generate the network topology and shortest routes in order

to move the mobile routers to their optimal locations. The success of this experiment represents

the accomplishment of the initial goal of this problem: using mobile routers to help maintain a

multi-hop wireless network connection between a mobile user and base station.



62

Figure 3.14: This is the final configuration of the mobile router network. The user is at the
right end of the top hallway and the router had moved to the middle of the top
hallway to satisfy the connectivity. In this experiment, user did not lose any sent
data packets.

3.6 System Scalability and Future Work

3.6.1 Scalability

When the system was being designed, the main goal was to build a functioning framework

and more time was focused on implementing networking features instead of creating a highly

scaleable system. Although, the current system has only been tested with networks containing

a few nodes, there are no major obstacles that would prevent the system from being scaled to

networks containing dozens or even possibly hundreds of nodes. However, there are issues within

the system that would need to be addressed before this is possible.

Since the simulations and experiments only contained a few nodes within the network,

several functions within the system were developed in methods that favor easier implementation

instead of more computationally efficient techniques. Typically, these problems are simple issues

such as using an array to store variables when a hash map would be faster and more beneficial.

Another example is in routing, where alphabetical characters were used to designate nodes, pro-

ducing a hard limit of 26 nodes in the network. However, this can be extended to always use two

characters to designate a node or add separation characters between node names. These issues can
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Figure 3.15: This figure shows various stages of the adversarial user trajectory experiment
being conducted using the real world robotic system implementation. The dark
lines show the connectivity paths between the nodes. The first screen shows
a mobile router moving up to maintain connectivity as the user moves to the
right. After reaching the top, the mobile router remains stationary until the
user reaches the end of the hallway. When this occurs, the router starts to move
right in an attempt to maintain connectivity between the user and base station.
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be easily fixed to improve scalability and at the time time, increase the stability and performance

of the system.

The other limiting factor with scalability is the use of bandwidth within the network. When

the transmission packet format and networking algorithms were developed, they also focused on

easy to implement techniques over performance and scalability. Since the experiments only uti-

lized four nodes and energy conservation was ignored, the networking algorithms were designed

with the assumption of unlimited bandwidth. However, this is never the case in the real world

where often, bandwidth and energy are both severally limited. One area that is affected by this

is the broadcasting algorithm. The current method simply broadcasts messages blindly and the

only limiting mechanism is to throw away messages that have been received before. More effi-

cient algorithms could be developed to selectively broadcast messages to only certain nodes but

still achieve the same results as before. One example is to have nodes not broadcast a message

to its neighbor if that neighbor has already received the same message before. This is a improve-

ment that is simple to implement since all broadcast messages already track the nodes they have

passed through. The transmission packet formats themselves could also be compressed or encoded

differently to save bandwidth.

The system right now is tested and performs well in the environment where there are only

a few nodes in the network. It is certainly possible to extend this system to use dozens of nodes

but some improvements need to be made before this is possible.

3.6.2 Future Work

Although this system was designed to implement the algorithm and experiments presented

in [14], it can easily be extended to a more generic robotic network system capable of supporting

other algorithms and implementations. Along with the scalability techniques as mentioned in

the previous section, other improvements could be made to create a better, more robust, robotic

system.

The applications right now has the capability of transmitting, routing and broadcasting any

message using the TCP internet protocol. The biggest feature that would improve and expand the

overall system would be to add support for the UDP protocol. As explained in Section 3.3.2.1,

these two protocols function in different ways to serve different purposes. By supporting UDP,

developers would have the flexibility of picking the best protocol for the function they are trying

to implement instead of being restricted to only one standard.

Additional features that would be helpful are acknowledgment or status messages. Cur-
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rently, if any application sends a robot move command, there is no indication of whether that

robot actually received the command and if the command was successfully executed. This is

especially problematic when move commands are routed across the network through several in-

termediate routers. Since TCP connections are already made when commands are transfered, they

can be kept open until a robot finishes its move action and a status message could be returned

just as connections are closed. If the control messages were sent using UDP, the acknowledge

messages could be sent in the same way, using either the same route or broadcasted throughout

the network.

One of the initial problems with TCP is that sometimes intermittent connections can be

made but not kept and this can cause many accuracy problems with calculating network topology,

as described in Section 3.2.8. One way of solving this is to develop a mechanism, similar to the

ping command, where individual links between nodes can be tested for quality. This mechanism

could either attempt several TCP connections and measure their bandwidth or transmission time

to determine their strength. If UDP was used, several packets could be sent back and forth to

measure the round trip packet time and percentage of lost packets. All of this information could

be used to determine be best possible links to use and would greatly increase the reliability and

stability of the overall robotic network system.

One feature that would help achieve the ultimate goal of maintaining a user to base station

network connection is to keep TCP connections open between nodes and forward data streams

directly. Currently, network connections are only kept long enough to transmit individual pack-

ets and are closed after the packets have been received. The current implementation essentially

only propagates individual message from the user to the base station. However, TCP connec-

tion functions could be modified so that connections are kept open even after the data has been

transmitted. Therefore, instead of passing single messages, each node would forward streams of

data between its connections. These chains of network connections would allow the user to send

streams of data directly to the base station and vice versa. This would have enormous potential

as sensory data, such as live webcam video, could now be streamed directly to the base station

without interruption.



CHAPTER 4
Discussion and Conclusion

The contributions from the two parts of this thesis detailed many different aspects and areas asso-

ciated with wireless mobile robotic networking. It looked at a theoretical approach to the funda-

mental problem of network formation using mobile robots that have small communication ranges

compared to the size of their environment. The developed algorithm was analyzed and contrasted

to another approach in several computer simulations. From a systems point of view, this thesis

detailed a mobile robotic system that was implemented to test motion planning algorithms de-

signed to maintain multi-hop network connections. This system was further expanded to provide

a robust framework that can be used to support future networking algorithm implementations and

experiments.

These contributions demonstrate some of the recent trends in mobile robotics research.

Mobile robots have already started to become an acceptable, and even welcomed, part of many

peoples’ lives and this will only increase with time. With the prevalence of wireless technology,

it has helped to push this field into new and exciting areas, particularly when it comes to practical

real world applications. More research is constantly being implemented and tested on large teams

of robots and this will only expand as the field of mobile robotics matures. As wireless and

computing technologies become more powerful and affordable, it might not be a too distant future

where tasks assigned to a single robot (or several humans) will be finished in a fraction of the time

by several groups of networked mobile robots.
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APPENDIX A
Commands

User Commands
Command Name Encoded Purpose

Message
Update Nodes Status (Local) uns Updates the status of all nodes locally
Update Nodes Status (Route) unsr Updates the status of all nodes using their paths
Update Nodes Multi Broad-
cast

unbm Updates the status of all nodes using multiple
broadcasts

Update Nodes Single Broad-
cast

unbs Updates the status of all nodes using a single
broadcast

Update Nodes Path Multi
Broadcast

unpm Updates the paths of all nodes using multiple
broadcasts

Update Nodes Path Single
Broadcast

unps Updates the paths of all nodes using a single
broadcast

Update Nodes Neighbors unn Updates the status neighboring nodes and their
neighbors

Send Message Prompt smp Prompts the user to send a message
Send Discovery Broadcast
Prompt

sdp Prompts the user to send a status update broad-
cast

Set Node Location snl Prompts the user to set the node’s current loca-
tion

Print Nodes Status pns Prints the status of all nodes, obtained from the
current node

Print Nodes Neighbors pnn Prints the status of all nodes and their neighbors,
obtained from the current node

Print Recieved Id pid Prints all of the message IDs received so far
Control Robot Prompt crp Prompts the user to control the robot
Compute Nodes Path cnp Computes the shortest paths from the base station

to all nodes
Left, Right, Up, Down l, r, u, d Sets the node’s location to one unit left, right, up

or down respectively
Quit q Quits the application

Table A.1: A table containing all of the message encoding and user commands for the mobile
robotic system.
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Node Commands and Responses
Command Name Encoded Purpose

Message
Control Robot Command crc Moves the robot
Send Message Command smc Sends a message
Path Request Broadcast (Mul-
tiple)

rdb Requests a node’s path using a single broadcast
message

Path Request Broadcast (Sin-
gle)

rdbs Requests a node’s path using multiple broadcast
messages

Status Request Broadcast
(Multiple)

nlb Requests a node’s status using a single broadcast
message

Status Request Broadcast
(Single)

srb Requests a node’s status using multiple broadcast
messages

Status Request Local nsr Requests a node’s status locally
Status Request Route srl Requests a node’s status using its path
Route Discovery Response rdr Response to a node path request
Node Location Response nlr Response to a node status request
Node Neighbor Request nnr Response to a node neighbor status request

Table A.2: A table containing all of the messages that a node can receive and respond with.

Separation Symbols
Separator Name Character Purpose
Header Message Separator | Seperates the routing header from the message
Send Message Separator ! Seperates the send message command from the

actual message to send
Message Parm Separator # Seperates the parameters of a command
Node Neighbor Separator % Seperates the status of different neighbors
End Of Packet Char $ Designates the end of a data packet

Table A.3: A table containing all of the separation symbols used for encoding messages.



APPENDIX B
TCP Client and Server Code

B.1 C Client

1 // C version

3 // address and port to connect to

4 const char * sendAddr;

5 int sendPort;

7 // socket and tcp connection variables

8 int sockfd, portno, n;

9 struct sockaddr_in serv_addr;

10 struct hostent *server;

12 // open socket for connection

13 sockfd = socket(AF_INET, SOCK_STREAM, 0);

15 // get host name

16 server = gethostbyname(sendAddr);

18 // set server address

19 bzero((char *) &serv_addr, sizeof(serv_addr));

20 serv_addr.sin_family = AF_INET;

21 bcopy((char *)server->h_addr,

22 (char *)&serv_addr.sin_addr.s_addr,

23 server->h_length);

24 serv_addr.sin_port = htons(sendPort);

26 // connect

27 connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr))

29 // reading and writing is now possible with a char[] buffer

30 read(sockfd, buffer, bufferSize);

31 write(sockfd, buffer, bufferSize);
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33 // close socket when finished

34 close(sockfd);

Listing B.1: Source code that is used for the C client interface

B.2 Java Client

1 // Java Client

3 // create a socket to the server’s address and port

4 Socket socket = new Socket(address, port);

6 // set up readers and writers

7 InputStreamReader cin = new InputStreamReader(socket.getInputStream()→

);

8 BufferedReader in = new BufferedReader(cin);

9 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

11 // reading and writing is now possible with a char[] buffer

12 in.read( buffer );

13 out.write( buffer );

14 out.flush();

16 // close when done

17 out.close; in.close(); cin.close();

18 socket.close();

Listing B.2: Source code that is used for the Java client interface

B.3 C Server

1 // C Server

3 // server variables

4 int clntSock, portno, clilen;

5 pthread_t threadID;

6 struct ServerThreadArgs *threadArgs;

7 struct sockaddr_in serv_addr, cli_addr;

9 bool subThread = false;
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11 portno = _port;

13 // open a server socket

14 servSock = socket(AF_INET, SOCK_STREAM, 0);

16 // set server address info

17 bzero((char *) &serv_addr, sizeof(serv_addr));

18 serv_addr.sin_family = AF_INET;

19 serv_addr.sin_port=htons(portno);

20 serv_addr.sin_addr.s_addr = INADDR_ANY;

22 // bind the server to a socket

23 bind(servSock, (struct sockaddr *) &serv_addr, sizeof(serv_addr))

25 // listen for an incoming connection on the server socket

26 listen(servSock, 5);

27 clilen = sizeof(cli_addr);

29 // loop forever

30 for (;;) {

32 // accept the new client’s connection

33 clntSock = accept(servSock, (struct sockaddr *) &cli_addr, (→

socklen_t *) &clilen);

35 // use threads to handle each client

37 // create a struct to store the client’s info for the new thread

38 threadArgs = (struct ServerThreadArgs *) malloc(sizeof(struct →

ServerThreadArgs));

39 threadArgs->clientSocket = clntSock;

40 threadArgs->mercuryObject = _mercury;

42 // create and start a new thread to handle the connection

43 pthread_create(&threadID, NULL, ServerHandlerThreadFunction, (→

void *) threadArgs);
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45 }

Listing B.3: Source code that is used for the C server interface

B.4 Java Server

1 // Java Multi-threaded Server

3 // create a new socket for the server at a specific port

4 ServerSocket serverSocket = new ServerSocket(port);

6 // loop until listening ends

7 while (listening) {

9 // block until a client connects to the server

10 Socket clientSocket = serverSocket.accept();

12 // create and start a new thread to take care of the new client

13 ServerThread st = new ServerThread(clientSocket);

14 Thread t = new Thread(st);

15 t.start();

16 }

Listing B.4: Source code that is used for the Java server interface


