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ABSTRACT

Physical simulation is important for a wide range of problems, particularly so in

the field of robotics. The need for faster simulation to provide larger amounts of

data is increasingly growing. The trend in computing is growing towards more cores

as opposed to faster cores, and the graphical processing unit, or GPU, shows great

promise to provide high computational performance. Previously, the dynamics of

physical simulation have been solved by using the complementarity formulation.

This work explores a different formulation of dynamics using set based force laws,

called the proximal point formulation. The formulation of the complementarity

based dynamics is reviewed, and this format is used as a base to derive the proximal

point formulations, showing equivalence in the process. To test the proximal point’s

ability to be used in physics simulation, a plugin for dVC2D, a planar physics

simulator, is written to implement the proximal point dynamics formulation. In

addition, this implementation is also ported to the GPU. The accuracy of these

implementations to the complementarity formulation solved with the PATH solver

is compared. Finally, the time performance between the implementations and the

PATH solver are compared.

xii



CHAPTER 1

INTRODUCTION

1.1 Background

Physics simulation has a wide variety of uses. In robotics in particular, there is

a very large potential for physical simulation to advance the capabilities of robotics.

Physical simulation allows for better motion planning, by allowing complex robots

with many degrees of freedom to better model the consequences of their actions.

This is of particular use in robotic grasp planning, where there are many ways to

grasp an object, but some work better than others. Being able to accurately predict

the consequences of actions is growing increasingly important as robots come into

closer and more frequent contact with people, both in industrial settings, and in

the push to bring more robotics technology into the home. Robots hitting people,

knocking glass onto the floor, breaking furniture, or otherwise causing damage that

could harm people and cost money are situations that must be maximally avoided

if the dream of widespread robotics is to ever be realized.

In order for physical simulation to be useful, it needs to have two main prop-

erties. It must be fast, and it must be accurate. The requirement of accuracy is

pretty straightforward, for an inaccurate simulation isn’t anything more than ran-

dom math. How accurate a simulation must be is a more complicated question,

that depends largely on the application. In video games, more realistic looking

physics is desirable to provide an immersive gaming experience. Technologies such

as NVIDIA’s PhysX [1] provide very fast physics simulations that are designed to

look realistic, but the proximity to actual reality are of no consequence other than

potentially the player’s enjoyment. Other approaches give higher weight to accu-

racy, but sacrifice speed as a consequence, such as using the PATH solver to solve

complementarity based dynamics [2].

In grasp planning, simulation allows a robot to test many different grasps in a

simulated space, and from this simulation space, pick a grasp that best accomplishes

the desired goal. One approach is to pre-compute grasps for common objects, such

1
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as the Columbia Grasp Database [3]. With this approach, simulation times can

be long, but knowledge of what a robot will encounter is needed well in advance,

minimizing the robot’s ability to adapt to new circumstances.

Additionally, physics simulation can be used to learn about an environment.

For example, a robot could try to push an object on a table, recording the results.

It could then test combinations of parameters like coefficient of friction to see what

yields similar results [4]. The robot can then use this information in the future to

determine if an action will be safe. In order to accomplish this type of task, the

ability to perform many simulations quickly is critical for it to be useful.

With current trends in computing going toward many cores instead of faster

cores, parallelization of computations is needed in order to increase simulation speed

without sacrificing accuracy. Computation on the graphical processing unit (GPU)

promises to provide greatly increased performance by utilizing the highly parallel

nature of the GPU. The GPU has a more specific architecture that is well suited to

certain tasks, but not to others. Specifically, the GPU is best suited to applications

where the same set of equations or mathematical steps are applied to a large set of

data. This case can be seen when applying the dynamics equations to a large set

of bodies and contact points. NVIDIA’s CUDA [5] has made programming for the

GPU substantially easier, allowing normal programming techniques to be used to

port code to the GPU.

With this knowledge, this work will explore an implementation of the prox-

imal point method of formulating dynamics, and the potential of these dynamics

equations to be ported to the GPU. The proximal point formulation uses convex set

theory to formulate the dynamics constraints in terms of sets instead of the more

commonly used complementarity approach.

Though physics simulation has many steps, only the dynamics step will be

explored in this thesis. Other steps, such as determining what objects have the po-

tential to collide, and updating positions after the dynamics update, will be carried

out with the physics simulation program dVC2D [2]. There is potential for optimiz-

ing the other steps such as collision detection using particle filtering [6], but they

won’t be explored here.
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1.2 Previous Works

Work on using the complementarity problem for dynamics has been going on

for many years. Of particular interest was the development of the dVC2D planar

physics simulation program, used in this thesis [2]. dVC2D initially uses the comple-

mentarity formulation to solve for dynamics, but it has the ability to support plugins

for a variety of other methods. We will be using this plugin capacity to implement

our proximal point formulation. In addition to supporting other dynamics solvers,

it also supports other time-stepping methods, of which there are quite a variety [7]

[8]. To solve the complementarity problem, dVC2D uses the PATH solver [9], but

other methods exist as well [10].

Looking at large scale computing, there have been attempts to optimize the

computations of the complementarity problem. Tasora et al. [11] [12] implemented

a new formulation of the complementarity problem that could be multi-threaded to

give increased performance. The GPU has been used in the past to try to solve the

complementarity problem, even before technologies like CUDA existed [13]. These

used graphics processing to do math, though the process was much harder then. Now

formulations of the complementarity problem have been used on the GPU to speed

up the dynamics simulation with success [14]. In the work of Tasora et al., they

were able to get a performance speed up of approximately one order of magnitude

when working with up to 8000 rigid bodies. In addition, their approach solves for

normal and frictional forces. One attempt also looked at porting other steps to the

GPU [15], though it made some trade offs with versatility. The simulation in [15]

also solved the complementarity problem using a Jacobi style solver, which resulted

in some limitations in the problem sets that could be solved. The work in this thesis

also works with a Jacobi style solver, though ways of mitigating its limitations are

explored. In addition, they all completed collision detection on the CPU.

The proximal point formulation has been investigated and formulated in the

past [16] [17] [18], though many of these are simply investigations into the mathemat-

ics of the proximal point formulation, and how they compare to known systems of

dynamics. The proximal point formulation has been used in practice in the specific

environment of continuously variable transmissions [19], or CVTs. In this work, the
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use of sets to formulate the specific dynamics equations showed a good correlation

to the measurements available for comparison.

1.3 Outline

This thesis is divided into 5 chapters. The first chapter contains the intro-

duction, previous works, and this outline. The rest of this thesis is organized as

follows:

Chapter 2 first covers the basics and notations used in the derivations. Then

it looks at the complementarity problem, and the formulation of complementarity

based dynamics. From there, the basics of the proximal point are covered. Then,

the proximal point dynamics are derived based off of the derivation of the comple-

mentarity dynamics. After the proximal point dynamics are derived, the method

used to solve them is explored.

Chapter 3 then looks at how the proximal point solver was implemented. First,

the basic implementation on the CPU (proxSerial) is covered, then the GPU im-

plementation (proxCUDA) is covered, as well as some of the basic special concerns

that GPU programming involves.

Chapter 4 looks at the results of the CPU and GPU implementations of the

proximal point dynamics, by comparing the results to the PATH solver complemen-

tarity implementation. First the non-friction case is explored, then the frictional

implementation. Then the performance of the implementations is examined.

Finally in Chapter 5, lessons learned about the proximal point formulations

and implementations are covered in the conclusion section during which potential

avenues for future work are explored.



CHAPTER 2

RIGID MULTIBODY DYNAMICS SIMULATION

2.1 Basics and Notation

The dynamics of rigid multibody systems is based on classical Newtonian

mechanics. The basic ideas used in this physics simulation will be covered briefly,

though a more through overview can be found in Appendix A.

The state of individual bodies can be described using its position (~q), as well as

its time derivatives such as position (~̇q). The position of a body has two components,

linear and angular. The position of a body typically describes the position about

the center of mass of a body. Velocity (~ν) is the rate that a body’s position changes.

For 2D cases, the position and velocity vectors are as follows:

~q =


X

Y

θ

 (2.1)

~ν =


vX

vY

ω

 (2.2)

When two bodies come into contact, a normal force (λn) exists to keep the

bodies from penetrating. The normal force is so called because it is normal to the

surface. The normal force only pushes bodies away, and only exists when there is

contact between them.

The friction force (λf ) is a resistance to two bodies sliding against each other.

It is tangential to the surface, and like the normal force, also only exists when the

two bodies are in contact. When a body is sliding, the force of friction is equal to

the normal force times a coefficient of friction (µ). When there is no velocity in

the sliding direction, the friction force can be less than that, and resists the body

starting to slide.

5
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If a force doesn’t pass through the center of mass of an object, it will apply

a torque, or moment, to the body. A moment causes a body to rotate, and can

be thought of as twisting the body. Most forces applied to a body will also cause

a moment. In order to simplify some explanations, we may talk about “particles”,

which are infinitely small bodies, and therefore can’t rotate, so moments can be

neglected and only pure translation considered.

2.2 Dynamics Formulations

For the following sections, only the 2D case will be covered. It is worth noting

that all of the ideas expand into 3D, but since this thesis only covers 2D problems,

only the 2D cases of problems and situations will be covered.

2.2.1 Discrete Time vs Instantaneous Models

Before we look at specific ways of formulating the dynamic models, it is im-

portant to look at the 2 ways that we can look at solving the models. Instantaneous

time is the most intuitive form, and relies solely on formulating the equations using

differential calculus (e.g. velocity is the derivative of position). Discrete time is a

little more complicated, but easier to solve for. This involves looking as specific,

discrete points in time, and just solving for those points. A superscript l, such as

ql, represents that a quantity is at a given time tl. q
l+1 would be at the next time

interval. The time between time intervals, also known as the time step is defined as

h, and in this thesis, we will only be working with constant time-steps.

The method used to approximate derivatives is:

~̇q =
~ql+1 − ~ql

h
(2.3)

2.2.2 Generalized Matrices

In the following sections, certain matrices will be used to represent various

mathematical and dynamical quantities.
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2.2.2.1 Basic Matrices

If you have taken a linear algebra course before, the following matrices will

probably be familiar, but will be covered anyway to provide a refresher and clarify

notation.

Since I is used for the moment of inertia, U will be used for the identity matrix,

which is a square matrix with 1s on the main diagonal, and 0s elsewhere.

In =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 (2.4)

2.2.2.2 Mass Matrix

The mass matrix contains all the masses and moments of inertia of the bodies,

located along the main diagonal. In a 2D situation (such as the one we are examining

in this thesis) M ∈ R3nx3n, where n is the number of bodies.

M =



m1U2×2 0 · · · 0 0

0 I1 · · · 0
...

...
. . .

...
...

0 0 · · · mnU2×2 0

0 0 · · · 0 In


(2.5)

where mi is the mass of body i and Ii is the moment of inertia of body i.

2.2.2.3 Wrench Matrices

A contact wrench describes how a contact force magnitude will impact a body.

Given a unit vector of the contact force direction in the global coordinate frame,

v̂ =
[
vx
vy

]
, and the distance of the contact location from the center of mass D =

[
Dx
Dy

]
,

Wi =


vx

vy

D ⊗ v

 (2.6)



8

where ⊗ is the cross product. A full W matrix is constructed from the individual

Wi matrices, where each row is for a body, and each column for a potential contact

point. If a contact point does not reference a body, it will be a vector of 3 0s at that

location .

2.2.3 Complementarity Formulation

The system of equations and conditions used to solve for the normal and

friction forces in dVC2D and other simulators is a system called the complementarity

formulation.

2.2.3.1 The Complementarity Condition

The complementarity condition can be stated in a variety of ways, but the

simplest case is in the Linear Complementarity Problem (LCP). The LCP can be

formulated as such:

Given a matrix M ∈ Rnxn and a vector q ∈ Rn, find two vectors, z ∈ Rn and

w(z) ∈ Rn that satisfy the following conditions:

w = Mz + q (2.7)

0 ≤ w(z) ⊥ z ≥ 0 (2.8)

It is worth reminding the reader here that when equations such as the one

above are written for vectors, w(z), z, and q are all lists of many values (for example

z = [z1 z2 z3]T is a vector). This is something I often overlooked in the beginning,

and it lead me to far more confusion than it should have. Additionally, it is worth

noting that w(z) indicates that the value of w is a function of z, or in other words the

value of w is dependent on the value of z. If w and z were completely independent,

it would be rather trivial to solve this problem.

Satisfying the first condition should be fairly straightforward to anyone who

has used matrices in algebra, and therefore won’t be given much time here.

The second condition is where the complementarity condition is where the

problem becomes unique (and gets its name). The symbol ⊥ sets wT z = 0. Vectors
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that satisfy this condition are called “orthogonal” to each other. Put another way,

the second condition requires the values of w and z must be greater than zero, and

for every value wi ≥ 0 , zi = 0. The reciprocal is also true; that is for every zi ≥ 0,

wi = 0.

The second condition could also be written a second way:

w ≥ 0, z ≥ 0 (2.9)

wizi = 0 for all i (2.10)

Both forms express the same idea, and have the same requirements, though in

the rest of this thesis, only the first form will be used.

2.2.3.2 Mixed Linear Complementarity Problem

The LCP from the previous section can be expanded further, in a form called

the Mixed Complementarity Problem, or MCP. The MCP has several differences

from the LCP. First, the “Mixed” refers to the fact that in addition to the conditions

of the LCP, an MCP can also contain other equations that must be satisfied. These

additional equations are usually set to equal zero by convention, but not required.

The other difference between the LCP and the MCP is that the MCP does

not require the relationship between w and z to be linear in nature. Put differently

w(z) can be a nonlinear function.

2.2.4 Complementarity Based Dynamics

In forming the complementarity based dynamics, the MCP form of the com-

plementarity problem will be used. Additionally a full and exhaustive explanation

of complementarity based dynamics is beyond the scope of this thesis, but having

and understanding of how they work is important for understanding the proximal

point formulation, for the proximal point form is based off of the complementarity

form. More information on complementarity based dynamics can be found in prior

works [20] [2] [21].

Below will be a simple derivation of the complementarity forms of normal
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contact and frictional forces in the 2D case.

2.2.4.1 Normal Contact

The complementarity condition is used in several ways in dynamics formula-

tion. In the case of normal contact, it can be logically seen as representing the fact

that either there is a positive distance between two bodies, OR there is a normal

force between the bodies; there can not be both.

Let ~λn be the vector of all the forces normal to their respective contact planes

(one force for each potential contact point) otherwise known as the normal forces,

and ~Ψn(~q, t) be a vector of the gap functions. Each potential contact point has a

unit vector in the normal direction denoted n̂i for the ith contact. The gap function

is simply the distance of a potential contact point from penetrating a body, where a

positive value is no contact, a negative value is penetration, and a 0 value is contact.

Calculating the gap function is simply a matter of geometry, though there are

some techniques that are better than others. Exploring those techniques are beyond

the scope of this thesis. Additionally, the gap function is calculated in dVC [2] and

the gap distance is provided.

With the gap function provided, the normal contact constraint can be written

as such:

0 ≤ ~λn ⊥ ~Ψn ≥ 0 (2.11)

2.2.4.2 Friction

In the case of frictional forces, otherwise known as tangential contact con-

straints, the use of the complementarity problem is less intuitively obvious. The

unit vector for the tangential friction force is denoted t̂i for the ith contact, and is

perpendicular to ni. As noted earlier, the vectors in the complementarity condition

must be non-negative. Since friction can be in the positive or negative directions,

the frictional force is broken into two values at each contact point, one in the posi-

tive direction (t̂i), and one in the negative (−t̂i). Let λfi be the value of the friction

force along the tangential direction, and λ∗fi be the friction force formulated for the
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complementarity problem.

λ∗fi =

λfi1
λfi2

 (2.12)

λfi = λfi1 − λfi2 (2.13)

It is worth reminding that λfi1 and λfi2 are both positive in value, and their

vectors are opposite in direction.

In addition to the above requirement, the frictional force has two other re-

quirements. If the body is sliding, then the magnitude of the friction force is equal

to µλn. If the body is not sliding, then the friction force is between −µλn and µλn.

Since λn is present in these requirements, a third requirement that is there is no

friction force unless there is a normal force is therefore implied.

In order to accomplish the above requirements, a variable σ is used which ap-

proximates the sliding speed at the contact point (since it is speed, and not velocity,

it will always be non-negative). With this extra variable, the complementarity form

for friction between a particle on a fixed surface can be written as such:

0 ≤ λfi1 ⊥ t̂~νi + σi ≥ 0 (2.14)

0 ≤ λfi2 ⊥ −t̂~νi + σi ≥ 0 (2.15)

0 ≤ ~σi ⊥ λni − λfi1 − λfi2 ≥ 0 (2.16)

Using a particle allows us to neglect moments, simplifying the equations to

help get the idea across. The full form allowing multiple bodies and many contacts

can be written as such:

0 ≤ ~λ∗f ⊥ W T
f ~ν + ~σ ≥ 0 (2.17)

0 ≤ ~σ ⊥ ~λn − ET~λf ≥ 0 (2.18)

In the above equation, E is a block diagonal matrix where each block i on the

main diagonal is a vector of 1s of size 2, since there are 2 directions of friction that
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need to be added for each contact point.

E =



1 0 · · · 0

1 0 · · · 0

0 1 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 1


(2.19)

This form, though more useful in practice, hides the increased complexity in

the λ∗f vector and the Wf matrix. If the friction is between two bodies, then both

bodies would be represented in the wrench matrix (Wf ), since its the relative velocity

of the contact point that matters, not the velocity in the global frame. If you would

like a more complete explanation, then please see [20] [22] [23]

2.2.4.3 Instantaneous Form

In addition to the above equations, there is the additional constraint that

~f = m~a and ~τ = I~̇ω. This requirement, also known as the Newton-Euler equations,

is what allows the forces applied above to achieve their goals of reducing sliding and

keeping bodies from penetrating. This is achieved by requiring that the mass of a

body times its acceleration is equal to all the forces being applied to it at any given

point in time. Knowing that the forces present in our system are the normal forces,

frictional forces, and external forces (such as gravity), we can write this requirement

as:

M~̇ν = Wn(~q, t)λn +Wf (~q, t)λf + λext(t) (2.20)
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The final set of equations for all of our contact dynamics is:

M~̇ν = Wn(~q, t)λn +Wf (~q, t)λf + λext(t) (2.21)

0 ≤ ~λn ⊥ ~Ψn ≥ 0 (2.22)

0 ≤ ~λ∗f ⊥ W T
f ~ν + ~σ ≥ 0 (2.23)

0 ≤ ~σ ⊥ ~λn − ET~λf ≥ 0 (2.24)

2.2.4.4 Discrete Form

In order to take the instantaneous forces and spread them over a time step, we

need to take our forces and convert them to impulses, which is just a force applied

for an amount of time. First we can update our Newton-Euler equation to use

impulses instead of forces:

M(~ν l+1 − ~ν l) = Wnp
l+1
n +Wfp

l+1
f + pl+1

ext (2.25)

M~νl+1 = M~νl +Wnp
l+1
n +Wfp

l+1
f + pl+1

ext (2.26)

The impulse applied to a body is equal to the change in velocity of that body

which is where the first equation comes from, but the second form is a more useful

form when it comes to solving for the unknown values in the next time step (at tl+1).

We also need to know how to update the position of the body between time-steps:

~ql+1 = ~ql + h~ν l+1 (2.27)

We use νl+1 and not νl because νl is already known, and no amount of force

in the future can change that. By using νl+1, our impulses at tl+1 can change the

velocity, and therefore dynamics of the system.

For the normal force, we need to replace our instantaneous gap function with

a new equation:

0 ≤ ~pl+1
n ⊥

~Ψl
n

h
+W T

n ~ν
l+1 ≥ 0 (2.28)

In this equation, we use
~Ψl

n

h
to determine how fast we can travel in the time

between tl and tl+1 and not penetrate. We then use W T
n ~ν

l+1 to determine how fast
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we will be traveling.

The changes for the frictional force are much simpler, and simply changing all

the forces to impulses is sufficient to convert the equations to the discrete form.

0 ≤ ~p∗l+1
f ⊥ W T

f ~ν
l+1 + ~σl+1 ≥ 0 (2.29)

0 ≤ ~σl+1 ⊥ ~pl+1
n − ET~pl+1

f ≥ 0 (2.30)

Though not noted in the above equations, the wrench matrices are calculated

at the beginning of a time step, and are constant throughout that time step. To

help clarify, here are all the equations used in formulating the discrete form:

M~νl+1 = M~νl +Wnp
l+1
n +Wfp

l+1
f + pl+1

ext (2.31)

~ql+1 = ~ql + h~ν l+1 (2.32)

0 ≤ ~pl+1
n ⊥

~Ψl
n

h
+W T

n ~ν
l+1 ≥ 0 (2.33)

0 ≤ ~p∗l+1
f ⊥ W T

f ~ν
l+1 + ~σl+1 ≥ 0 (2.34)

0 ≤ ~σl+1 ⊥ ~pl+1
n − ET~pl+1

f ≥ 0 (2.35)

2.2.4.5 Matrix Form

Equations 2.31 to 2.35 can be placed into matrix form, which is the format

used by most solving algorithms. The right side of 2.33 is referred to as ~ρl+1
n , the

right side of 2.34 is referred to as ~ρl+1
f , and the right side of 2.35 is referred to as

~sl+1. In addition, some rearranging of terms is needed.
0

~ρl+1
n

~ρl+1
f

~sl+1

 =


−M Wn Wf 0

W T
n 0 0 0

W T
f 0 0 E

0 U −ET 0




~ν l+1

~pl+1
n

~pl+1
f

~σl+1

+


M~νl + ~pext

~Ψl
n

h

0

0

 (2.36)

2.2.5 Proximal Point Formulation

The proximal point formulation takes a different approach to looking at the

contact laws. Instead of complementarity, it considers the contact forces in terms
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of set theory, and in particular, convex set theory. A convex set is defined as a set

where if any two points in the set were connected by a line, all points along the line

will also be in the set. In this thesis, we will only be dealing with 1D sets, so the

definition can be simplified a little more; a 1D set is convex if it consists of only a

single range of numbers.

Next we need to define what the proximal point to a convex set is. Given a

convex set C ⊂ Rn and n ∈ R (where n is the number of dimensions of the set):

proxC(x) = argmin
x∗∈C

||x− x∗||, x ∈ Rn (2.37)

To clarify, there are essentially two possible situations that you can encounter

when evaluating equation 2.37. The first is that the point x is located in the set C

(x ∈ C). In this case, proxC(x) = x. As an example, if C = {1 ≤ x ≤ 5}, then

proxC(2) = 2 since 2 is located in C.

The second possible situation is that x is not in the set C (x /∈ C). In this

case, proxC(x) would be equal to the closest point to x that is in the set C. Using

our example C from above, C = {1 ≤ x ≤ 5}, proxC(7) = 5, since 7 is not in C,

and 5 is the closest number to 7 that is.

2.2.5.1 Set Valued Normal Contact

In order to use the proximal point function, we need to rewrite our dynamics

constraints. The set of all possible normal forces (Cn) is pretty straightforward:

Cn = {λn ∈ R|λn ≥ 0} (2.38)

In a more verbal form, the set Cn consists of all non-negative real numbers.

Next, we need to formulate an equation that will give us the same properties as the

complementarity formulation, namely that the normal force prevents penetration of

the bodies, and that the normal force only exists if the gap distance is non-positive.

λn − proxCn
(λn − rΨn) = 0 (2.39)
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There are several important points to how this equation works. First is that

λn minus proxCn
equals 0 guarantees that λn will be within Cn, and therefore a valid

value.

Secondly, r is called the “independent auxiliary parameter” and controls how

quickly the solver will converge on a solution, or if a solution can be converged upon.

It is also called the “r-value” in this thesis. How the r-value is determined will be

discussed later, but it will always be a positive value (r ∈ R+), and is unique for

each normal contact.

Additionally, if there is a distance between the bodies (Ψn ≥ 0), then λn will

be 0, as we would expect. If (Ψn < 0), then the equation will never be valid. I

encourage the reader to try some values in the equations to see this for themselves

if this conclusion doesn’t seem intuitive. In the instantaneous model, this means

that a value of λn will be found to prevent penetration. How to solve this problem

in the discrete model will be discussed later.

2.2.5.2 Set Valued Friction

The set of all possible friction forces is also fairly straightforward:

Cf (λn) = {λf ∈ R| − µλn ≤ λf ≤ µλn} (2.40)

The set Cf is slightly more complicated than Cn was. For starters, since the

limits of friction are a function of the normal force, what Cf contains is also a

function of λn. Next we need an equation that applies the full ±µλn if there is

relative sliding between the bodies, or applies a friction force in such a way as to

keep the sliding velocity to zero.

λf − proxCf (Cn)(λf − rW T
f ~ν) = 0 (2.41)

This form is very similar to the normal contact form in equation 2.39, with

only a few differences. Since the friction force is dependent on sliding velocity, the

gap distance is replaced with the sliding velocity. The r-value is the same in principle

as the normal contact, but their values can (and probably will be) different.
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To show that our equation yields the correct results, we can look at the two

possible cases of sliding, or not sliding. In the case of not sliding (W T
f ~ν = 0) and

λf ∈ Cf , the equation will be valid. If λf /∈ Cf , then the situation will probably

degenerate into the case of having sliding.

If there is sliding at the contact (W T
f ~ν 6= 0), then λf will be on the edge of Cf ,

which is ±µλn. If λf were within the bounds, then proxCf (Cn) 6= λf , and therefore

the equation could not be satisfied, forcing our constraints to hold.

2.2.5.3 Discrete Time Proximal Point

In addition to the above proximal point functions, the Newton-Euler equations

listed in the complementarity sections as equations 2.31 and 2.32 also are needed to

fully formulate the dynamics of the system.

The derivations to switch from instantaneous form to discrete form are the

same as those in section 2.2.4.4 (Discrete Form). We will be using those variables to

formulate the discrete time proximal point functions. The proximal point functions

translate well from the complementarity form, with the only real difference being

how the equations are solved. By switching from forces to impulses and moving the

prox functions to the right, we can arrive at the following equations:

M~νl+1 = M~νl +Wnp
l+1
n +Wfp

l+1
f + pl+1

ext (2.42)

~ql+1 = ~ql + h~νl+1 (2.43)

ρl+1
n =

~Ψl
n

h
+W T

n ~ν
l+1 (2.44)

pl+1
n = proxCn

(pl+1
n − rρl+1

n ) (2.45)

ρl+1
f = W T

f ~ν
l+1 (2.46)

pl+1
f = proxCf (pl+1

n )(p
l+1
f − rρl+1

f ) (2.47)

2.3 Solving Proximal Point Problems

2.3.1 Fixed Point Iteration

The proximal point equations are solved through a process called fixed point

iteration. Defining k as the current iteration, the basic fixed point iteration equation
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looks like:

xk+1 = f(xk), k = 0, 1, 2 . . . (2.48)

where for each xk iterated, the system comes closer to converging on a solution.

The above equations follow this form, and it is worth noting that ρn and ρf both

also are functions of their respective impulses, through the ν that is dependent on

impulses. Rewriting the above equations for impulse (equations 2.45 and 2.47) to

use fixed point iteration, they would look like:

pk+1
n = proxCn

(pkn − rρkn) (2.49)

pk+1
f = proxCf (pk+1

n )(p
k
f − rρkf ) (2.50)

where all the values are at l + 1 (note that the superscripts are now in terms of k).

There are situations that could cause the system to diverge away from a solu-

tion instead of converging on it. It is for this reason that the choice of the indepen-

dent auxiliary parameter (r-value) is important. In particular, as r approaches 0, it

will take an infinite amount of time to converge on a solution, and as r gets large,

the details of the system behavior get concealed and cause the solution to diverge

away.

2.3.2 Independent Auxiliary Parameter (r-value)

In this thesis, we tested two ways of choosing the r-value, the Relaxed Richard-

son and the Relaxed Jacobi. In addition, there is a third method, the Relaxed

Gauss-Seidel, that shows promise for alleviating the problems of the first two. All

of these methods are called “relaxed” because of a relaxation parameter, noted as

ω. This parameter acts as a divisor to modify the r-value calculated by a constant

factor across all contacts, its main use being to reduce the r-value to increase the

systems ability to converge on a solution.

The Delassus Matrix [24] is used in the Jacobi and Gauss-Seidel schemes. The

Delassus Matrix is defined as:

G = W TM−1W (2.51)



19

where W is a wrench matrix. In the implementation of the proximal point equa-

tions, a different Delassus Matrix is built for the normal impulses and the frictional

impulses. The two matrices could probably be combined into a single matrix, with

possibly better results. The forms for the following implementations treat r as a

vector, with one element for each contact. Since there are two Delassus Matrices in

this implementation, there would also be two r vectors, one for each contact force.

2.3.2.1 Relaxed Richardson

The Relaxed Richardson is the simplest method to implement r, with r simply

being equal to ω, or more formally put:

r = ωE (2.52)

where E is a vector of ones, with its length equal to the number of contact points.

Though the Relaxed Richardson is clearly the simplest system for calculating

the r-value, it also gives the worst performance, especially when largely different

masses are in the simulation, since the mass of a body affects the size of the impulse

needed to move it a certain distance.

2.3.2.2 Relaxed Jacobi

The Relaxed Jacobi scheme is the second method implemented, and uses the

Delassus Matrix (equation 2.51). It is defined as:

r =

(
diag(G)

ω

)−1

(2.53)

where diag(G) defines a matrix the same size as G where the only non-zero elements

are on the diagonal; in other words the diagonal of G.

What this yields in practice is that the mass and moment of inertia of the

bodies involved in a contact point are used to scale the r-value, and thus, the impulse

applied. The Jacobi method in linear algebra is guaranteed to converge if the matrix

is strictly diagonally dominant, and without the relaxation parameter (ω = 1), the

same would apply here. The reason being if multiple contacts have similar wrench
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matrices, their reaction forces will add, and can overreact, causing divergence.

2.3.2.3 Relaxed Gauss-Seidel

Though the Relaxed Gauss-Seidel was not implemented in this thesis, a brief

mention is still warranted, since it holds promise for alleviating some of the limita-

tions of the Relaxed Jacobi. In linear algebra, the Gauss-Seidel method is guaranteed

to converge if the matrix is symmetric or positive definite, in addition to the diago-

nal dominance that will allow Jacobi to converge. The relaxed Gauss-Seidel can be

defined as:

r =

(
diag(G)

ω
+ tril(G)

)−1

(2.54)

where tril(G) is the same size as G but the only non-zero elements are the lower

triangular, excluding the main diagonal.

What including the lower triangular components yields are r-values that are

scaled not only based on the mass and moment of inertia of the bodies involved

in the contact, but also on what other contacts will affect the bodies involved in a

contact. This allows higher r-values for bodies with few contacts, and lower ones

for bodies with many, to increase stability only where needed. Computing the lower

triangular component for a very large matrix can be computationally much harder

when many contacts, due to polynomial growth, instead of linear, as in the Relaxed

Jacobi.



CHAPTER 3

SOLVER IMPLEMENTATION

3.1 Implementation Basics

The implementation of the prox solver is broken up into three basics steps.

First, the data structures are built to pass the information needed to solve the prox-

imal point equations. Then, through the fixed point iteration, the proximal point

equations are solved for. Then, when the proximal point equations are solved, the

final body velocities are passed back to dVC2D in order to update the state of the

system for the next time step. The following sections will describe these steps in

more detail, first describing the CPU implementation. With the CPU implementa-

tion described, major differences between the CPU and GPU implementation will

be described, including best practices followed for GPU programming, and CUDA

programming in particular. There are a few components in the code that were used

in testing, but were not used in the tests documented in this thesis. In order to keep

the following explanations as straightforward as possible, they will not be included

in this explanation. Specifics of the data structures can be found in the code in

Appendix B.

In addition, dVC2D allows configuration settings to be passed from XML files

created for each scene. The proximal point implementations use this config file

to determine various things like which method should be used to calculate the r-

value, the relaxation coefficient, maximum number of iterations, and sizes of data

structures.

3.2 CPU (ProxSerial)

3.2.1 Build Data Structures

Due to the implementation of dVC2D, the data structures used to hold the

starting conditions for a time step are in a format best for solving complementarity

problems. In order to simplify programming, and in the case of the GPU speed up

memory transfers, new data structures are built.

21
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Two primary types of data structures are used. First there is an array of a

struct for bodies. There is one struct per body that may be involved in a contact.

In this struct, the bodies velocity at time l, mass, moment of inertia, any external

impulses (such as gravity), and the velocity at time l + 1 are stored.

Second there are structs for the friction and normal impulse calculations.

There arrays for each, with one element in the array for each potential contact

point. Both arrays store the wrench matrix for that impulse on each body (noted

as G in the code instead of W due to a different notation style referenced while

writing the code). In addition, each struct also contains the r-value for that contact

and impulse, the impulse calculated for the current iteration, a boolean value for

whether the impulse has converged on a solution, and the index value of where the

two potential bodies are stored in the array of bodies. In addition to the above, the

struct for the normal impulses also contains the gap at time step l.

The size of these data structures are determined from the config file, where

maximum sizes are set. Reallocating the data structures for each time step can

create problems, especially when the data structures can be fairly large.

3.2.2 Solve Proximal Point Dynamics

To solve the proximal point dynamics, first the r-values are calculated using

the information at the beginning of the time step. Then, the impulses and dynamics

updates are solved iteratively until a solution is converged on or a preset number of

iterations have passed. More detail on these steps are below.

3.2.2.1 Calculate r-value

To calculate the r-value, which method (Richardson or Jacobi) is determined

from the config file for the simulation. Regardless of the method used, each uses

a for loop to iterate through all the contacts being used, and assign the r-value

to each normal contact. If friction is in use, then all the contacts will be iterated

through again to assign the r-value to the friction contact struct. The math for

calculating the r-value can be found in section 2.3.2, or in the source code. In the

Jacobi formulation, instead of building the matrix and calculating the diagonal, an

equation for the diagonal was constructed.
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3.2.2.2 Solve Normal Impulse

To solve the normal impulse, a for loop iterates over all of the contacts.

First, ρn is calculated using equation 2.44. Then ρn is compared to a threshold for

convergence (during testing it was set to −1 × 10−6). If ρn is greater than that

value, then it is considered to be non-penetrating, and a boolean value indicating

this value has converged is set to true for use later. Next, the values inside the

proximal point function are calculated (pkn − rρkn), and are then compared to Cn,

and is noted p∗n. If the value is less than 0, then pk+1
n is set to 0, otherwise, it is set

to the value calculated earlier.

An extra function that can be enabled in the compiler flags is a method that

was tested to detect system divergence. If an impulse exceeds a preset limit, a flag

is set, and the system reduces the relaxation coefficient and restarts the time step

from the beginning. In addition, the maximum number of iterations is doubled to

compensate for the increased time that will be needed to reach a solution. The idea

behind this is that if a value is diverging, the impulses will get incredibly high, at

times approaching infinity. Additional systems were tested to try to detect diver-

gence, but were not as effective. Further information on attempts to fix divergence

are in section 4.4.1.

3.2.2.3 Solve Friction Impulse

The friction impulse is solved in the same way as the normal impulse, with a

few exceptions. First, if the normal impulse for that contact is 0, then the friction

impulse is set to 0 and is finished, since friction can’t exist without a normal force.

Next, the equation for ρf is different than ρn, so equation 2.46 is used instead.

After ρf is calculated, it’s absolute value is compared to a threshold for convergence

(during testing it was set to 1× 10−6). The absolute value is taken because friction

can be positive or negative, and the threshold is set to a value greater than zero to

take into account small numerical errors. Then the value inside the proximal point

function is calculated and compared to Cf , and is noted p∗f . In code this consists

of checking if p∗f < −µpn. If it is, it is set as equal to −µpn. Otherwise, a check is

made, p∗f > µpn, which if true then p∗f = µpn is set. These take care of the proximal
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point function. From there, the value is saved, and the next contact is checked in

the for loop.

3.2.2.4 Update Body Dynamics

Once all the impulses are solved for, then the dynamics need to be updated.

This is essentially an implementation of the Newton-Euler equation, noted in equa-

tion 2.42. Each body has a value of the total impulse applied to it over the time step

by all contacts (separated into X,Y and rotation impulse). To solve the Newton-

Euler equation, first a for loop iterates over all of the contacts. The impulse calcu-

lated for the normal impulse is added to a cumulative value for the bodies involved

in the contact1. If there is friction, then the same step is performed for the frictional

impulse for the contact.

After all the impulses are summed up for every body, another for loop is used

to solve the Newton-Euler equations. For each body, the velocity is set as:

~ν l+1 = ~ν l +M−1(~pl+1
ext + ~ptotal) (3.1)

where the vectors and mass matrix are for the single body.

3.2.2.5 Check for Convergence

After the above steps are done, the boolean variables for all the contacts

indicating if that particular contact point converged are checked in a for loop. If

any of them are false (that contact hasn’t met the criteria for convergence), then

it returns false and another iteration is run. If every contact returns true for being

converged, then the loop to solve the proximal point dynamics ends.

3.2.3 Return Velocities

The last step when the dynamics equations are fully solved, and the body

velocities have been updated with the final impulse values, is to pass the final body

velocities to the simulator. With the velocities, the simulator can calculate the state

1More specifically, the impulse multiplied by the wrench matrix for that impulse (which results
in a vector) is added to the vector of impulse for the body
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of the bodies for the next time step.

3.3 GPU Programming

Understanding GPU programming requires two basic pieces of information.

The first is the architecture of the GPU, and in particular how it differs from the

CPU architecture, to help in understanding how to modify programs from conven-

tional programming paradigms. Second are particular techniques for optimizing

GPU code that give the greatest benefit for programs written for the GPU. Both

are covered in the following sections.

3.3.1 Basic GPU Architecture

The architecture of the GPU is important because it governs how you program

for it. By understanding how it preforms, you can play to its strengths, and try to

mitigate its weakness. Since the GPU architecture is substantially different from

the standard CPU, this is probably the hardest part of programming for the GPU.

Since various GPUs are different, this thesis will focus on NVIDIA’s CUDA and in

particular, their Fermi architecture. There currently isn’t much difference between

CUDA architectures at the moment, but its hard to tell what the future will bring.

At the lowest level in the GPU is a thread, which executes a sequence of

instructions, very much like a CPU thread would. Each thread is capable of knowing

its identity (or ID number). Threads are then grouped into sets of 32 called warps.

These warps all execute the same instruction, just on different memory addresses.

If there are conditional branches (like if statements), then some of the threads will

sit idle. Each GPU card has several multiprocessors (for example, the card used

in this thesis has 15. Multiprocessors run many warps, swapping them out when

appropriate, similar to how a CPU swaps out threads. Multiprocessors also have

a group of shared memory that all the warps on that multiprocessor share, on the

order of approximately 65,000kB. It is the limit of this memory that mainly limits

how many warps a multiprocessor can run at a time. All the multiprocessors also

share a global memory, and this is where memory is copied to from the host (CPU)

and is usually around 1GB. In addition the program that the GPU runs is called a
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kernel, and current CUDA enabled cards allow each multiprocessor to run a different

kernel. Global memory is much slower than the multiprocessors local memory, but

that latency can be helped in part by a cache shared by all the multiprocessors.

3.3.2 GPU Optimization

When programing for CUDA and the GPU, there are three primary properties

you want to optimize [25]. First, you want to maximize utilization. There are several

ways to accomplish this. First, whenever possible, you want the CPU to execute

code while the GPU is busy, maximizing your use of both resources. Additionally,

you want to keep the GPU running code even during memory transfers if possible.

There is also the ability to run multiple kernels on the GPU at the same time,

though we found no way to utilize this ability.

Next you want to maximize memory throughput. Memory latency for global

memory access is extremely high, as is memory latency from the hosts main memory

to the GPU memory. In order to keep the transfer of memory from the host to

the GPU to a minimum, you can run calculations that are not highly parallel to

build intermediary data structures. Additionally, when the device accesses its global

memory, there are special techniques that can be used to speed up this access.

Implementing these procedures can be complicated and time consuming, so they

were not implemented here. Finally, by having many more threads executing on the

GPU than there exists physical threads in the GPU, you can hide memory access

latencies. This is achieved by switching out waiting threads with threads that have

their memory already fetched and waiting.

Finally, you want to maximize instruction throughput. The main way to do

this is to minimize divergent branching. This is when a conditional statement, causes

some threads in a warp to take one path, while the other threads do another. Since

all the threads of a warp must do the same instruction or none at all, this can vastly

slow down execution.



27

3.4 GPU (ProxCUDA)

3.4.1 Build Data Structures

The data structures for proxCUDA contain the same information as proxSerial,

but are broken up into more separate components. This allows only the specific data

that needs to be transferred to do so. In addition, much of the data to be transferred

to the device is stored in memory allocated for “write combining”, which allows the

memory writes to be done in bursts, but doesn’t guarantee correct ordering if the

CPU tried to read it. Since it is acting as a one way buffer, this is fine and worth

the speed gain. As some data structures are finished being built, they are copied

to the GPU to maximize parallel operations of the system. All of the building of

the data structures for the GPU are done on the CPU, since that is where the data

currently resides.

3.4.2 Solve Proximal Point Dynamics

The biggest difference between the CPU and GPU implementations is that

many operations that were handled in for loops in proxSerial are now handled

by individual threads in the GPU. The sections of code that were in for loops

ported very well to proxCUDA, since the for loops executed the same code on each

iteration. The GPU allows all the iterations of for loops to be run in parallel, since

there is little conditional logic in the for loops used here.

In the proxCUDA implementation, the calculation of the r-value, solving the

normal and frictional impulses, and updating the body dynamics are all handled

in separate GPU kernels. First the r-value is calculated and the body dynamics

are updated for the l + 1 time step. Then a while loop is executed that runs till

convergence is detected or the maximum number of iterations are run. Each loop is

one iteration of the fixed point iteration. In the while loop, first the normal impulse

and the friction impulse are solved for. Then the convergence data is copied to the

CPU, during which the body dynamics are updated. When the convergence data is

finished copying, the check for convergence is then run on the CPU, in parallel with

the update body dynamics on the GPU. If the convergence check passes, the loop

ends.



28

3.4.2.1 Calculate r-value

The calculation of the r-value is almost a direct port, where the CPU host

code determines what method to use (Richardson or Jacobi), and calls a GPU

kernel which solves for the r-values of that method. Each contact point is given a

thread, so the thread id is the same as the for loops iteration number.

3.4.2.2 Solve Normal Impulse

Solving the normal impulse was also a very direct port, replacing the for loop

with individual threads. The kernel to solve the normal impulse is called, and the

steps to solve are similar to those used in proxSerial. The main difference between

the implementation between the two is that the GPU code does not contain any

of the experimental divergence detection that the CPU code contains, since adding

variables to be communicated between the GPU and CPU is more complicated, and

proxSerial should provide an equally valid test platform.

3.4.2.3 Solve Friction Impulse

The friction impulse kernel is only called if there is a non-zero coefficient of

friction, otherwise this step is skipped. If there is a non-zero coefficient of friction,

then the friction impulse kernel is called, and solved in the same manner as the

proxSerial function to solve for the friction impulses.

3.4.2.4 Update Body Dynamics

The kernel to update the body dynamics was the least amenable to modi-

fication to parallelization. As implemented, each body is given a thread. It was

done this way since each body’s velocity needs to maintain the correct ordering for

reading and writing, and synchronization across threads and multiprocessors is very

inefficient. From there, all the threads then use a for loop to iterate through all the

contacts to check if a contact includes that body. If it does, then the impulses are

added to that bodies total impulse value. Though this involves conditional branch-

ing, most of the time all the threads of a warp will not be involved in that contact,

and therefore not branch. After all the contacts are iterated through, then all the
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threads update the dynamics for their respective bodies using the Newton-Euler

equations, in the same manner as proxSerial.

3.4.2.5 Check for Convergence

After the data structures with the convergence booleans are copied from the

GPU to the CPU, the checks are done in the same ways as proxSerial. As stated

earlier, the CPU is able to run the convergence check while the GPU is updating

the body dynamics. The CPU loops through all the contacts, checking if they have

set the converged boolean to false. If it has found any that are false, it returns false

for the system being converged, and waits for the body dynamics to update to finish

if it hasn’t yet.

3.4.3 Return Velocities

After the impulses have reached convergence only the final velocities of the

bodies are copied back to the CPU. From there, the body velocities are passed to

the simulator so that the body states may be updated, and the next time step

started. The interface to get the body velocities was abstracted so that the time-

stepper doesn’t need to know which prox solver was used.



CHAPTER 4

RESULTS

4.1 Test System

The following tables (tables 4.1 and 4.2) are the main specifications of the

hardware and software of the test system that these results were compiled on.

4.2 Test Cases

In order to explore the performance of this implementation of the proximal

point formulation, several test cases have been designed. These test cases were then

run with a variety of modifications to explore the performance. To keep comparisons

consistent, two shapes were used for the below tests.

Table 4.1: Hardware specifications of test computer

Component Specification

CPU Intel Core i7 930 @ 2.8GHz 64bit
Memory 6GB Triple Channel
GPU NVIDIA GTX 480 1.5GB @ 1.45GHz

Table 4.2: Software specifications of test computer

Software Version

Operating System Ubuntu 10.04 64bit
Compiler GCC Version 4.4.3
CUDA Toolkit Version 4.0

30
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Figure 4.1: The Hexagon, the first test body

4.2.1 Shapes

4.2.1.1 Hexagon

The first shape used was a hexagon, and was used in most of the experiments.

An example of the hexagon can be seen in figure 4.1. Worth noting is that the

hexagon is not completely symmetric, with 2 of the sides longer than the others.

The dimensions of the hexagon are 10 cm×16 cm, with a mass of 1 kg and a moment

of inertia of 30 kg cm2. Its center of mass is located centrally, and denoted by the

symbol located there.

4.2.1.2 Regular Octagon

Additionally, a second shape, a regular octagon, was used in some tests to help

show behavior across multiple body types. The fact that it is regular indicates that

all the sides are of equal length. An example of the octagon can be seen in figure

4.2. The mass of the octagon was set to 1 kg and a moment of inertia of 30 kg cm2.

4.2.2 Friction Angle

The first test case consists of 25 hexagons lined up, set to fall on a fixed

platform. The platform is slanted at about 5 degrees (0.09 radians), and a second

test is run with the platform at about 10 degrees (0.18 radians). By setting different

coefficients of friction, various circumstances can be explored. The friction angle test

initial conditions are shown in figure 4.3.

The bodies don’t all hit the platform instantaneously, separating what state



32

Figure 4.2: The Regular Octagon, the second test body

Figure 4.3: The basic test environment for friction, with 25 bodies falling
on an angled surface

certain bodies are in at a given point in time, better representing a more mixed

scenario, rather than an artificial, homogeneous environment. Depending on the

coefficient of friction, the bodies may come to a rest, or they may slide off of the

end.

4.2.3 Large Group

The next test is to check how the prox solvers compare to PATH in terms of

speed, and to help make the comparisons clear, large test sets are used. In addition,

the GPU performs best with large groups, so larger data sets should help indicate

its performance. The large test set used in this thesis can be seen in figure 4.4, and

consists of 7 rows of 75 hexagons, totaling 525 bodies falling on surfaces angled at

about 1 degree (0.02 radians). There is also a slight step between the 3 surfaces,

to help encourage the bodies to fall into each other. In order to create larger data

sets, these groups are stacked on top of each other including the platform surfaces,



33

Figure 4.4: The basic test environment for many bodies, with 525 bodies
falling on angled surfaces

in sets of 4 (for 2100 bodies) and 10 (for 5250 bodies). Realistically, the groups are

independent, but the simulator keeps the groups all in one simulation, resulting in

collision checking between all bodies

4.3 Accuracy

When we examine the solvers that were implemented, they are compared to

the PATH solver, since the MCP implementation with path has been shown to give

accurate results [4]. Additionally, since the proximal point formulations were shown

to be equivalent to the MCP formulation, you would expect the two formulations to

provide the same answers. It is in this section that we explore how well the solvers

as implemented were able to achieve this case. The Friction Angle test case was

used to produce all the results in this section.

4.3.1 Special Case

It is worth noting that a special case exists in the collision detection system of

dVC2D that when two surfaces sliding along each other meet at their corners, the

collision checker considers this to be a wall, until a body gets nudged past it. Each

dynamics solver may handle this special case uniquely, but they are all affected by

it.

As can be seen in figure 4.5, each solver reacts to the bump differently, but

all experience it. Once the corner gets past the edge, sliding is no longer restricted.

Differences between the solvers can most likely be explained by how long it takes to

pick an impulse to get past the corner. Since there are multiple solutions, the exact

solution to the simulation is indeterminate.
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Figure 4.5: The edge bump condition as handled by all three dynamics
solvers

4.3.2 Convergence

4.3.2.1 Richardson vs Jacobi

The Relaxed Richardson scheme of calculating the r-value, though computa-

tionally simple, is rather useless in most cases. In order to achieve a stable system,

the relaxation coefficient has to be set extremely low. How low to set it requires

some knowledge of the system, and/or extremely conservative guessing. Since the

impulse required to move a body a certain distance is dependent on the mass of

that body, largely different masses require largely different impulses for a given ρ.

After some casual experimenting, the potential of using the Relaxed Richardson to

calculate r-values was abandoned in favor of the Relaxed Jacobi. It is the Relaxed

Jacobi that is used in the following examples. How to choose a relaxation coefficient

will be discussed in section 4.4, Parameter Tuning.
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Figure 4.6: Comparison of the X position of hexagonal bodies using
PATH and proxSerial on a 5 degree surface

4.3.3 Normal Contact

The first test is to check how the solvers compare when only normal contact

is involved (that is, there is no friction force). First we check the CPU implemen-

tation (proxSerial), then the GPU implementation (proxCUDA). When bodies are

referenced, they are referenced by their starting X position. Since the hexagons are

resting on the platform, the Y positions and the rotation (θ) are not compared,

only the X positions. Additionally, the following tests were done with the maximum

number of iterations set to 500 per time-step, and the relaxation coefficient set to

0.5. These were found to be mostly stable and reliable, and further combinations

justifying this will be explored later.

4.3.3.1 ProxSerial

The first test case explored is the friction angle case with the platform at 5

degrees, and checked with the hexagons.

As can be seen from figure 4.6, there is a strong agreement between the results

of PATH and proxSerial in this case. These two bodies are representative of the

results seen from all 25 bodies. Next, we look at the same setup, but with the

regular octagons.

In figure 4.7 we can see the same kind of agreement as we saw with the



36

0 0.5 1 1.5
0

20

40

60

80

100

120
PATH vs. proxSerial

Time (s)

X
 p

o
s
it
io

n
 (

c
m

)

 

 

Path

proxSerial

(a) Body 17

0 0.5 1 1.5
200

220

240

260

280

300

320
PATH vs. proxSerial

Time (s)

X
 p

o
s
it
io

n
 (

c
m

)

 

 

Path

proxSerial

(b) Body 209

Figure 4.7: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 5 degree surface

hexagons. The only minor difference here is how body 209 falls off of the edge

of the platform. ProxSerial does not slow down the body as much when it hits the

edge, and therefore has a greater X velocity when it falls off. Once it falls off, there

is no more dynamics solving, and each free falls at a constant horizontal velocity

(constant slope on the graph).

Next, we look at figure 4.8, where we again look at the hexagons, but this

time on the 10 degree surface. Here, the normal forces won’t be as great, and the

velocities will be higher. When looking at body 17, there is a small divergence

toward the center of the graph, but the lines from there run relatively parallel. This

would seem to suggest a small error by proxSerial at one of the time-steps caused

a change in velocity, but after that time-step, they continued to solve in a similar

way. This is further corroborated by body 209, which is in near perfect agreement

between the solvers, even as it hits the edge (at about 1s) and falls off.

Using the same starting conditions as figure 4.8, but with the octagons, we get

very similar results, as can be seen in figure 4.9. Also like in the above case, there is

a small divergence with body 17, though this time it is later, at about 1.25 seconds,

also most likely from numerical error. This conclusion is further corroborated by

setting the relaxation coefficient lower to help with stability. This comparison can

be seen in figure 4.10. Here, we get a very strong correlation between the two solvers
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Figure 4.8: Comparison of the X position of hexagonal bodies using
PATH and proxSerial on a 10 degree surface
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Figure 4.9: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 10 degree surface

when the relaxation coefficient is set lower, for greater numerical stability.

4.3.3.2 ProxCUDA

As with proxSerial, the first test case we will look at is the hexagons falling

on the platform set at 5 degrees. As can be seen in figure 4.11, there is strong

agreement between the two bodies. There is a small divergence when body 209 hits

the end of the platform, but that is understandable. Otherwise, the proxCUDA
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Figure 4.10: Comparison of the X position of octagonal body 17 using
PATH and proxSerial on a 10 degree surface, with different
relaxation coefficients
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Figure 4.11: Comparison of the X position of hexagonal bodies using
PATH and proxCUDA on a 5 degree surface

implementation agrees with proxSerial and PATH, as we would expect.

Next, we checked the octagonal bodies, the results of which are in figure 4.12.

Due to stability problems, the relaxation coefficient had to be set to 0.25 to allow the

simulation to run. With these settings, body 209 has a near perfect match between

PATH and proxCUDA, while body 17 has a large divergence. Body 17 starts sliding

sooner, but the velocity of the two bodies appears to be in agreement. It is hard to

tell exactly what went wrong here, but with the exception of the starting conditions,
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Figure 4.12: Comparison of the X position of octagonal bodies using
PATH and proxCUDA on a 5 degree surface

it appears that the two solvers again are working similarly, within numerical error.

Testing the hexagonal bodies on the 10 degree surface, we went back to using

the relaxation coefficient of 0.50. Figure 4.13 shows the results. ProxCUDA here

showed a slight divergence with body 17, where it would appear a numerical error

caused a slight change in velocity, but over time the velocities again match between

the two. Body 209 has a much different error, where it appears that it started off

with a much higher velocity after landing on the platform. It is hard to discern

what would cause such an error.

When testing the octagonal bodies on the 10 degree surface, the relaxation

coefficient had to again be set to 0.25 in order to converge on a solution. The results

of this test run can be seen in figure 4.14. There is again a noticeable amount of

difference on both bodies from the results of PATH, but worth noting is that the

velocities are about same, resulting in what would be a relatively constant amount

of error. Important to note is that the results are of a relatively similar nature, just

with a larger amount of positional error.

4.3.4 Friction

In examining the results of adding the frictional impulses to the system, the

above scenarios were run again, with varying coefficients of friction (µ). The coeffi-
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Figure 4.13: Comparison of the X position of hexagonal bodies using
PATH and proxCUDA on a 10 degree surface
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Figure 4.14: Comparison of the X position of octagonal bodies using
PATH and proxCUDA on a 10 degree surface

cients of friction used were 0.1, 0.2, 0.5, and 1.0. These coefficients of friction have

real world equivalents of steel on steel, steel on cast iron, steel on brass, and rough

cast iron on rough cast iron, accordingly [26]. The results from the 1.0 tests won’t

be discussed here, since they are largely similar to the 0.5 results, and don’t add

any new meaningful observations.
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Figure 4.15: Comparison of the X position of hexagonal bodies using
PATH and proxSerial on a 5 degree surface with a coeffi-
cient of friction of 0.1

4.3.4.1 ProxSerial

The first test we will look at is the hexagons on the 5 degree platform with

a coefficient of friction of 0.1. As can be seen in figure 4.15, the results here are

much worse than the frictionless case. Instead of coming to a stop in sliding, the

bodies slide for a bit, almost stop, then start sliding again; the end result of which

is a sliding motion when there should be sticking. This is almost certainly from a

numerical instability, though the exact source is uncertain. A rotation of the body

can be seen in figure 4.16, which is characteristic of those bounces that will be seen

elsewhere in this section. That bouncing causes the body to penetrate the surface,

then get pushed out again. In this process, the body looses its stick and picks up

horizontal velocity. Though hard to represent in graphs, watching the simulation

makes this behavior clear. Additional evidence towards this being a convergence

error can be seen when the relaxation coefficient is set to 0.25, as in figure 4.17.

Here, the body mostly holds to the same value that PATH computes, except at 0.75

seconds, when a large divergence is detected. This is most likely caused by another

body impacting it, though it is difficult to tell with only this data.

Results with the octagonal bodies was largely similar (figure 4.18), though

their behavior with their larger moment arms and smaller bases caused the landing
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Figure 4.16: The angle of body 17 during steady state for PATH and
proxSerial

to also change with body 209. On body 17, you can see that they would have

close agreement if it weren’t for the bouncing causing sliding instead of the proper

sticking.

With the surface angled at 10 degrees, we get much better results. Here, a

0.10 coefficient of friction does not cause the bodies to stick, and therefore not prone

to the bouncing observed with the 5 degree surface. These good matches can be

seen for both the hexagons (figure 4.19) and for the octagons (figure 4.20).

Going back to the 5 degree surface, but with a coefficient of friction of 0.2, we

get similar results. Unlike the case of 0.1 though, both relaxation coefficients at 0.50

and 0.25 have very similar results (figure 4.21). It is worth noting that the results

are not identical, suggesting that the relaxation coefficient is causing the results to

change, although not significantly like earlier. A much lower relaxation coefficient

or different r-value might allow better stability, but that was not investigated here.

When the 5 degree surface is investigated using the octagons (figure 4.22), a

different behavior is observed. The PATH results suggests that the body rocks back

on landing, then slides forward slightly and stops. ProxSerial however, in not causing

the sticking to occur, dampens the rocking. It is still subject to sliding, though it

appears that the increased coefficient of friction has reduced the sliding velocity,
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Figure 4.17: Comparison of the effects of the relaxation coefficient on the
X position of hexagonal body 17 using PATH and proxSerial
on a 5 degree surface with a coefficient of friction of 0.1

as would be expected given an increased coefficient of friction. So though there is

numerical instability, the results are at least heading toward the right direction.

With the 10 degree surface and the hexagons (figure 4.23), body 209 now sticks

in PATH, giving similar results to what we saw earlier (proxSerial comes close to

sticking, but then slips again, causing relative sliding). Body 17 however slips in

PATH, and proxSerial shows similar results. Why both bodies would have different

behavior is not entirely clear. Placing the octagons in the same situation (figure

4.24) results in similar differences, where PATH shows sticking, and proxSerial shows

sliding. This time, there is not noticeable rocking, suggesting that proxSerial might

not slide, even at an optimal solution. Even still, a reduced relaxation coefficient

doesn’t change the results. Worth noting is that body 17 eventually moves in PATH

at about 1 second, suggesting that this could be just at the edge of stick/slip friction

at this angle for the hexagons.

Now setting the coefficient of friction to 0.5, both PATH and proxSerial sim-

ulate the bodies slipping on the 5 degree surface, both when using hexagons (figure

4.25), and when using octagons (figure 4.26). The bouncing can be seen with both

the hexagons and the octagons in the proxSerial solution, but the coefficient of fric-

tion is high enough to prevent most slipping anyway. It is notable that proxSerial
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Figure 4.18: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 5 degree surface with a coeffi-
cient of friction of 0.1

does allow a lot more slipping than PATH, particularly noticeable with the octagons.

When the surface angle is set to 10 degrees, the hexagonal bodies (figure 4.27)

and octagonal bodies (figure 4.28) no longer stick when using proxSerial. It appears

that hexagonal body 17 gets bumped, similar as is seen earlier, and proxSerial

causes a greater sliding than PATH does. This lack of sticking also appears to be

due to numerical errors, where setting the relaxation coefficient lower increases the

agreement, but only slightly, as seen in figure 4.29. The lack of sticking finally

changes when using a coefficient of friction of 1.0 for the hexagons, but not for the

octagons.

4.3.4.2 ProxCUDA

In examining proxCUDA, only the more particular corner cases will be ex-

plored, since an exhaustive exploration of the possible scenarios has already been

completed in the proxSerial section. As can be seen in figure 4.30, the proxCUDA

solver doesn’t suffer from the bouncing issue that proxSerial does. Additionally it

is worth noting that the Y axis has been scaled to show the maximum amount of

detail. In this, figure 4.30(b) shows an agreement in final resting position of 0.5cm.

Also worth noting is that both PATH and proxCUDA agree on the body coming to
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Figure 4.19: Comparison of the X position of hexagonal bodies using
PATH and proxSerial on a 10 degree surface with a coef-
ficient of friction of 0.1

a rest, though body 17 is bumped by another body at 1.25 seconds, most probably

a result of the differing amount of time for the bodies to come to rest, which shows

some consequence of the differences between the two solvers.

It isn’t till the coefficient of friction hits 0.2 that the octagon has the same

agreement about stick slip. A comparison of the octagon in the same situation can

be seen in figure 4.31. Here you can see the octagon slipping at 0.1, but in the 0.2

it sticks, with only a little steady state error. The steady state error here looks like

it is the result of the first half second, where the PATH causes the object to stick

and rock, while proxCUDA has the octagon slip on landing.

When the coefficient of friction is increased to 0.5, the hexagon is much more

accurate (figure 4.32). It shows results similar to proxSerial, and high agreement

with PATH, as well as no bouncing as seen in proxSerial. The octagon shows much

worse agreement on position, but does settle into a mostly stuck position, with

only a slight slide, most likely the result of small numerical errors. The error with

the octagon most likely results from having a much higher center of gravity, but

the same moment of inertia as the hexagon. A rock and slide can be seen in the

behavior PATH yields, which has a lot of corner cases of sliding and sticking. With

that in mind, it seems reasonable that there would be mathematical differences in
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Figure 4.20: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 10 degree surface with a coef-
ficient of friction of 0.1

the results, however proxSerial didn’t experience these same differences (see figure

4.26).

When PATH shows sliding, as is the case with a coefficient of friction of 0.1

and angle of 10 degrees for the surface (figure 4.33), both the hexagon and the

octagon show pretty good agreement. The octagon, however, started sliding much

sooner, resulting in some positional error, but close velocities.

As the coefficient of friction increases in the 10 degree case, similar results to

above can be seen. The main difference to be noticed is that PATH and proxCUDA

have different transition points from sliding to sticking, and that can result in major

differences between the two solvers. Additionally, as is well demonstrated in the

case of the octagon, when a body lands, the complex combination of falling, landing

on an edge, and rotating, rocking and sliding allow small differences in how the

impulses are solved to result in large changes in the results.

4.3.5 Single vs Double Precision

When the above tests were run with the floating point variables set to single

precision instead of double, no discernible change in the results produced by either

proxSerial or proxCUDA occurred. This was expected, since the thresholds for



47

0 0.5 1 1.5
14

14.5

15

15.5

16

16.5

17
PATH vs. proxSerial

Time (s)

X
 p

o
s
it
io

n
 (

c
m

)

 

 

Path

proxSerial

(a) Relaxation Coefficient 0.50

0 0.5 1 1.5
14

14.5

15

15.5

16

16.5

17
PATH vs. proxSerial

Time (s)

X
 p

o
s
it
io

n
 (

c
m

)

 

 

Path

proxSerial

(b) Relaxation Coefficient 0.25

Figure 4.21: Comparison of the effects of the relaxation coefficient on the
X position of hexagonal body 17 using PATH and proxSerial
on a 5 degree surface with a coefficient of friction of 0.2

convergence are much greater than the precision lost by switching to single point.

4.4 Parameter Tuning

The main parameters that need to be tuned in these simulations are the time-

step size, the relaxation coefficient, the maximum number of iterations, and the

criteria for when the simulation has reached convergence. All of these with the

exception of the time-step size are unique to the proximal point solvers implemented

for this thesis. With the time step, the idea behind it is to approximate the integral

of the continuous functions. Much work has been done in mathematics on this

subject, and so it won’t be covered in detail here. The time step size chosen for

these simulations was confirmed through a trial and error, where larger time steps

resulted in radically broken simulations due to the excessive penetrations that could

result in a single time step, and much smaller time steps didn’t change the results,

but took longer to compute.

Demonstrating the relationship between the relaxation coefficient, maximum

number of iterations, and convergence criteria is difficult, since they are all inter-

twined properties; changing one has an effect on the others. The convergence criteria

is the most independent property, and for all the tests, was set to 1 × 10−6 for the
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Figure 4.22: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 5 degree surface with a coeffi-
cient of friction of 0.2

normal impulse, and 1×106 for the frictional impulse. The convergence criteria is a

balance between allowing an acceptable numerical error, and solving for the impulses

in a sufficient time. In the tests in this section, the units were in cm, so the normal

impulse was considered converged if the penetration depth between the bodies was

1 × 10−8 m, or 10 nm. For the friction impulse, it was considered converged if the

relative sliding velocity was less than 1× 10−8 m
s
, or 10 nm

s
. This reasonably seemed

like a reasonable set of limits, and considering the lack of change between single

and double precision, it seems to have been well within the precision limits of the

variables. The choice of convergence criteria is dependent on application, but from

our work with other simulations not documented in this thesis, 106 seems to be a

good starting number.

The relaxation coefficient are inversely related in the sense that if you decrease

one, you can increase the other and still converge on a solution. Alternatively, if you

increase one, you usually will need to increase the other to maintain the stability

of the system. Each value has limits that for any given simulation, no amount of

change on the other will allow a simulation to work. For example, r-values above

1 rarely if ever work, and setting the maximum number of iterations below 5 will

only work in incredibly simple circumstances. In theory, the maximum number
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Figure 4.23: Comparison of the X position of hexagonal bodies using
PATH and proxSerial on a 10 degree surface with a coef-
ficient of friction of 0.2

of iterations shouldn’t even be needed, since the system should be able to detect

convergence and finish when it is done. In reality though, more complex systems,

especially when friction is involved, had difficulty all converging at the same time.

More testing with convergence criteria would be helpful to fully explore why this

is the case. Terminating the simulation after a maximum number of iterations was

found to yield stable and accurate simulations, and increasing the maximum number

of iterations beyond a point (100 in the case of the friction tests above) was found

to have little effect on the results. The simple scenario of the friction tests above

found relaxation coefficients of 0.5 to work best, though occasionally 0.25 was used

to keep the simulation stable (as was noted above, such as in figure 4.10).

4.4.1 Divergence Detection

The divergence detection system implemented in proxSerial (described in sec-

tion 3.2.2.2) was a vast improvement over having nothing. Especially when met

with long simulations, or automated groups of simulations, having a divergence

that results in the simulation failing is unpleasant. Having the maximum impulse

set correctly is critical, since values too low can result in the relaxation coefficient

going extremely low, where the simulation will take much longer to converge than
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Figure 4.24: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 10 degree surface with a coef-
ficient of friction of 0.2

needed. Having it too high risks allowing the simulation become unstable anyway.

In many cases, adding the maximum normal impulse detection improved stability

when configured correctly.

Other systems to detect divergence were tested, and they all relied on checking

if the rate of change of pn was getting bigger or smaller. As a solution is converged

upon in the fixed point iteration, it was assumed that the functions would be linear,

and therefore as the function converged on a solution, the rate of change of pn

would get smaller. In practice, as bodies interact with each other, and even different

contacts on the same body interact, it causes the function of pn over the iterations

(k) to be highly nonlinear, leaving the rate of change for pn to vary drastically over

iterations. Consequently, we deemed it unsuccessful in detecting divergences of the

system.

4.5 Performance

In order to test the time performance of the proximal point implementations,

the Large Group test was used to test how fast each system could simulate. The

tests were run without friction (coefficient of friction set to 0.0), since the accuracy

of the non-friction tests were much better than the tests with friction, as shown in
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Figure 4.25: Comparison of the X position of hexagonal bodies using
PATH and proxSerial on a 5 degree surface with a coeffi-
cient of friction of 0.5

the previous section. In addition, the relaxation coefficient was set to 0.25, since the

large number of colliding bodies resulted in 0.50 providing an unstable simulation

prone to divergence. In addition, the maximum number of iterations was set to

2000, as this seemed to provide enough time for the simulation to approach con-

vergence. With so many bodies interacting, previously tested convergence criteria

rarely occurred in a reasonable time.

Due to the small differences in the results of each solver, and how the differ-

ences compound over time, the end results can be rather different when comparing

individual bodies. The overall picture is roughly the same, as can be seen in figure

4.34. In this, you can see how the bodies stack is different, but the overall picture

is similar, and more importantly for the purposes of measuring how fast the simu-

lations run, the number of bodies in contact and number of contacts are relatively

similar.

Table 4.3 shows how long it takes the three solvers to simulate 1-8 seconds of

simulated time for one group of 525 bodies. As the time increases, more bodies land

and mix increasing the number of contacts and bodies in collision, resulting in the

time per second to increase as the simulation proceeds. The GPU implementation

is the slowest, but this is not surprising considering the overhead of running on the
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Figure 4.26: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 5 degree surface with a coeffi-
cient of friction of 0.5

GPU, and the GPU runs best with large numbers of threads running per hardware

thread. In this example, the number of threads per hardware thread is close to 1:1.

ProxSerial performs much faster than PATH, running in almost half the time. This

improvement becomes even more pronounced as the problem size becomes larger.

When 4 groups are used (table 4.4), proxSerial runs in less than 1/6th the time it

takes for PATH to solve the same problem size. With the group size increased to 4,

the performance of proxCUDA is much more favorable to PATH, but still doesn’t

compare to well to proxSerial, with a run time about 1.5 times as long.

After the group of 4, PATH was no longer compared, because even assuming

a linear growth rate, it would take PATH over 9 hours to run. In reality PATH’s

performance grows much larger than that, making it impractical to run. In running

the group of 10, with 5250 bodies, proxSerial and proxCUDA show similar rates of

growth (table 4.5), which was not expected. As the number of contacts and bodies

increases, proxCUDA should grow more slowly in the time it takes to run. The best

explanation for why proxCUDA takes as long as it does is the implementation of

the update body dynamics kernel.

Figure 4.35 shows the output of the CUDA Profiler, a program by NVIDIA

that allows a developer to analyze the run time performance of GPU kernel calls.
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Figure 4.27: Comparison of the X position of hexagonal bodies using
PATH and proxSerial on a 10 degree surface with a coef-
ficient of friction of 0.5

The performance of proxCUDA running the Large Group test of 10 groups was an-

alyzed, and the update body dynamics kernel (named updateBodyNu) took almost

60% of the GPU’s running time. By comparison, running the normal impulse took

about 5%. Considering how the update body dynamics kernel iterates through all

the contacts, many global memory calls are made. In order to hide the latencies of

these accesses to global memory, there should be at least 100 threads allocated to

each hardware thread. In this simulation, there were only about 10:1. There are a

variety of optimizations that could be explored to improve this performance, which

will be discussed in the conclusion.

Even with the lower performance, both proxSerial and proxCUDA show vast

performance improvements over PATH, graphically represented in figure 4.36. A

conservative estimate was made for the run time for PATH with 10 groups, though

proxSerial can run 10 groups in less time than it takes PATH to run 4, and prox-

CUDA only takes a little longer.

Due to the massive run times of running PATH (over 3 hours for the group of

4), only proxSerial and proxCUDA were run in the group of 10 in table 4.5.
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Table 4.3: Simulation run times for one group of 525 bodies

Seconds Simulated PATH (s) proxSerial (s) proxCUDA (s)

1 11.56 11.41 13.04
2 27.86 27.66 49.00
3 82.72 57.18 112.24
4 142.70 90.99 185.29
5 206.21 123.56 259.95
6 274.09 157.99 336.86
7 347.16 190.39 417.33
8 424.71 223.72 504.58

Table 4.4: Simulation run times for four groups of 525 bodies (2100 bod-
ies total)

Seconds Simulated PATH (s) proxSerial (s) proxCUDA (s)

1 144.67 141.58 143.76
2 35.01 301.27 342.74
3 1249.64 514.66 642.82
4 3254.85 748.04 980.50
5 5271.30 975.52 1328.49
6 7287.65 1209.98 1688.75
7 9303.84 1438.82 2060.85
8 11320.30 1676.72 2460.73

Table 4.5: Simulation run times for ten groups of 525 bodies (5250 bodies
total)

Seconds Simulated proxSerial (s) proxCUDA (s)

1 793.83 826.28
2 1637.43 1768.07
3 2604.77 3218.43
4 3619.76 4934.11
5 4626.20 6696.33
6 5650.33 8515.47
7 6657.56 10388.80
8 7686.46 12396.40
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Figure 4.28: Comparison of the X position of octagonal bodies using
PATH and proxSerial on a 10 degree surface with a coef-
ficient of friction of 0.5

4.5.1 GPU Single vs Double Precision

When comparing the run times of the GPU executions in single precision and

double precision, the single precision only produces an average of 5% boost in speed.

This was unexpected, since in the GPU tested, the processors can do single precision

operations at about 8x the speed of double precision. The fact that the speed up is

so small provides further evidence that memory latency issues are at fault for the

dynamics update step running for so much longer. If more of the GPU operations

were mathematical, we would expect a much greater improvement by using single

precision.
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(a) Relaxation Coefficient 0.50
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Figure 4.29: Comparison of the effects of the relaxation coefficient on the
X position of hexagonal body 17 using PATH and proxSerial
on a 10 degree surface with a coefficient of friction of 0.5
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Figure 4.30: Comparison of the X position of hexagonal bodies using
PATH and proxCUDA on a 5 degree surface with a coef-
ficient of friction of 0.1
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(a) Coefficient of friction at 0.1
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(b) Coefficient of friction at 0.2

Figure 4.31: Comparison of the X position of octagonal body 17 using
PATH and proxCUDA on a 5 degree surface with a coeffi-
cient of friction of 0.1 and 0.2
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Figure 4.32: Comparison of the X position of hexagonal body 17 and oc-
tagonal body 17 using PATH and proxCUDA on a 5 degree
surface with a coefficient of friction of 0.5
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Figure 4.33: Comparison of the X position of hexagonal body 17 and
octagonal body 17 using PATH and proxCUDA on a 10
degree surface with a coefficient of friction of 0.1
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(a) PATH

(b) proxSerial

(c) proxCUDA

Figure 4.34: A section of the Large Group test simulation run after 1
second with each of the dynamics solvers

Figure 4.35: Result of CUDA Profiler on large group with 5250 bodies
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CHAPTER 5

CONCLUSION

This thesis explored the ability of the proximal point formulation to be used in

multibody physics simulation to replace the complementarity formulation for solving

dynamics. In particular, it aimed to explore the possible use of the proximal point

formulations on the GPU for improved performance and scaling. On this, the results

presented in this thesis show promise towards that possibility, though there are many

more problems that need to be explored before this implementation would be well

suited to replace PATH and the complementarity formulation.

First, removing or better understanding the differences between PATH and

the proximal point solvers’ results would be important to prove the validity of the

results of the proximal point implementations. Worth exploring in particular are

why the bodies bounce when friction is used in proxSerial, and why the steady

state errors exist in proxCUDA. On the CPU, some possible avenues of exploration

would be to verify how the compiler builds the mathematical operations, and if

there are optimizations that need to be disabled, such as with compiler flags. Sim-

ilar explorations could be made on the GPU, where some operations are known to

deviate from the IEEE standards for floating point numbers [27]. It would also be

worthwhile to explore how the proximal point implementations compare to actual

experiments, rather that assuming that the complementarity formulation and PATH

are completely accurate.

Some other possibilities to the above problems would be to explore other ways

of detecting convergence, and what to do when a contact does reach convergence. Of

particular utility would be the ability to adjust what would constitute convergence

automatically, based on the magnitudes of the bodies size, mass, and velocity. It

might also be important to adjust convergence on a per contact basis, if large and

small bodies are mixed in the same simulation, a case that was not explored in this

thesis.

What might further improve performance, and possibly accuracy, would be
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better choices of the r-value. Though the Relaxed Richardson and Relaxed Jacobi

were explored, the Relaxed Gauss-Seidel shows great possibilities to allow a more

aggressive relaxation coefficient, while still maintaining system stability. Some of

the numerical errors caused by the addition of friction could be a result of instabili-

ties. Additionally, combining the Delassus matrices from normal and friction might

help with the instabilities as well. The performance hit taken by having such a large

matrix to perform calculations might be partially mitigated by using the CUDA

linear algebra library, CUBLAS [28]. If the GPU is able to provide a performance

boost, it may also be possible to use multiple GPUs working on the same simulation

to gain even more performance for very large simulations. In such a case, minimiz-

ing communications between GPUs would be needed to keep memory latency to a

minimum, but building boundaries where a penalty method is used at the boundary

is one possibility [29].

With the CPU implementation of the proximal point formulation performing

far better than expected, it would also be worthwhile to make proxSerial multi-

threaded on the CPU, since the for loop nature of the current implementation is a

good candidate for a multi-threaded port, and CPUs trending towards also having

many cores. Additionally, a hybrid solution of updating the body dynamics on the

CPU, and running the proximal point equations on the GPU may also be worth

exploring, though more detailed information about the performance of the specific

parts of the simulation would be helpful to determine if that is an avenue worth

pursuing.

It would also be worthwhile to explore separating the simulations from one

large simulation, to many simulations run in parallel, such as exploring a space of

possibilities in simulation. In this case, it would be known what bodies could collide

with what, making collision checking and dynamics updates substantially faster. In

a case like this, PATH would scale linearly with the number of simulations, but

the dynamics update on the GPU would also be much faster, providing another

situation that may be better suited for GPU acceleration. In addition, currently

each step in the GPU is performed with a separate kernel call, each of which has

a certain overhead slowing down the simulation. Synchronization between all the
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multiprocessors made it difficult to implement a single kernel to fully solve for the

dynamics, but if each multiprocessor could solve an isolated simulation, it may be

possible to port the entire dynamics update to the GPU. It may also be possible

to check for convergence in the GPU, though tests would be needed to determine

which method would be faster.

A deeper rewrite of dVC2D to use either the data structures for the proximal

point implementations, or a data structure more agnostic to which technique is used

might also yield better performance. In addition, it may be possible to port other

components of dVC2D to the GPU, such as collision detection.
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APPENDIX A

PHYSICS REVIEW

The dynamics of rigid multibody systems is based on classical Newtonian mechanics.

The most common and well known formulation is Newton’s second law:

∑
~f = m~a (A.1)

Where
∑ ~f is the sum of the forces applied to the body, m is the mass of the

body, and ~a is the acceleration of the body. With this law, the interactions between

bodies can be calculated. The motion of bodies is described with Kinematics, and

the forces on bodies is dynamics. With these, we can describe the motion and

interactions between bodies.

When we talk about bodies, we will be referring to “rigid” bodies, which

means that the bodies do not change shape or otherwise deform. Describing the

bodies of the system as rigid is a simplifying assumption used to make physical

simulation easier. Though no real body is truly “rigid”, it can be shown that the

rigid assumption is a safe an accurate assumption to make for many cases [4]. It can

also be intuitively observed that most objects that we interact with daily (such as

cups, phones, pens, tables, etc.) don’t visibly deform, and the effects of any small

deformation can be neglected and still yield useful results.

A.1 Basic Physics

A.1.1 Kinematics

Kinematics is defined as the branch of mechanics that studies the motion of

a body or a system of bodies without consideration given to its mass or the forces

acting on it. This allows us to separate the description of the motion of body from

the forces acting on the body. In order to describe the motion of bodies in our

simulation, we will be using two properties, position and velocity. Each of these

both have two components, linear and angular. In two dimensional space, a body
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has two linear positions (X and Y ) and one angular position (commonly θ). The

linear position is usually of the center of mass of a body, and the angular position

is rotation about that point. The center of mass of a body is the average location

of all the mass of a body. Each of these positions can be differentiated, giving two

linear velocities (Ẋ and Ẏ ), and one angular (θ̇ or ω). Velocity can be differentiated

further into acceleration as you might expect, but that is not important here.

A.1.2 Dynamics

Dynamics refers to how forces cause motion in bodies. In our study of simu-

lation, there are several possible sources of such forces. The simplest of these forces

are directly applied external forces. In addition to forces applied externally to a sin-

gle body, there are also the forces that result from contact and interaction between

multiple bodies. Equation A.1 can be expanded into other forms using differential

calculus. When looking at simulation using a time-stepping system, it can be helpful

to look at Newton’s second law in terms of impulses.

An impulse is the integral of a force applied over a time, or more simply a

force applied over a given amount of time. An impulse can also be defined as a

change in momentum. Momentum has two components, linear and angular. Linear

momentum (p) is equal to the body’s mass times its linear velocity.

p = m~ν (A.2)

Angular momentum (L) is the angular velocity of a body times its moment

of inertia, I. The moment of inertia is a measure of a body’s resistance to changes

in rotation. Just like the mass of a body resists changes in velocity, the moment of

inertia of a body is also sometimes called its angular mass.

L = I~ω (A.3)

These forces (or impulses) can come from 3 main sources. They are normal

contact, friction, and external forces.
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A.1.2.1 Normal Contact

The normal force is the force that a body exerts normal to its surface. As you

are probably familiar with in your day to day life, objects do not interpenetrate.

The normal force is the force that two bodies in contact exert on each other to keep

that from happening. When we talk about the normal force in this way we call it a

constraint, since it constrains what our bodies are allowed to do.

The normal contact constraint, also called unilateral constraint, is the simplest

and most obvious constraint on body interactions. A gap function, typically noted

as Ψn, represents the distance between two bodies. Additionally, the normal force,

noted as λn is the force with which the two bodies push on each other. When

Ψn ≥ 0, λn = 0 since the bodies must be in contact in order to push. Consequently,

if λn > 0 then Ψn = 0. Put simply, if there is no normal force then the bodies are

not penetrating; if there is a force between two bodies, then the bodies are touching

but not penetrating.

A.1.2.2 Friction

Friction is the force that results from two bodies sliding past each other. It

is always perpendicular to the normal force at a point of contact, and also like

the normal force, can only exist when 2 bodies are in contact. Friction is a very

complex set of interactions, and has several types, but we will also only explore dry

friction, for any other type of friction would be well beyond the scope of this thesis.

Dry friction can be modeled simply using Coulomb’s Law of Friction. Coulomb’s

law states simply that the force of friction λf is less than the normal force times a

coefficient of friction µ.

λf ≥ µλn (A.4)

The coefficient of friction is a property of the materials of contact, which can

usually be looked up if the two material types are known. The frictional force is also

independent of velocity, therefore, if ~ν > 0, then λf = µλn. The stick-slip model of

friction described here is also sometimes referred to as stiction.
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A.1.2.3 External Forces

External forces are forces that come from outside the system being measured.

In our case, the system being measured would be our interacting bodies. In the cases

of friction and the normal force, energy and momentum are conserved (slowing down

one body will speed up another). External forces are not limited by this requirement,

and can therefore add or remove energy from the system.

The most common external force is gravity. The force of gravity acts on the

center of mass of a body, and is a constant force acting on a body2. The gravitational

force for a body is only dependent on the mass of a body, and therefore does not

change for a body with constant mass, which is an assumption made for rigid bodies

(as in, rigid bodies won’t leak, break, or otherwise shed material).

In addition to the gravitational force, dVC allows for applying external forces

and moments to a body to act as a controller. These forces act directly on the center

of mass of the body and since they are given by the controller, are known absolutely.

2Technically, gravity can vary depending on location, but for all but the most extreme of
situations, it can be treated as constant with no adverse consequences, and therefore will be
treated as such here



APPENDIX B

SOURCE CODE LISTINGS

B.1 Timestepper

B.1.1 STProx.h

/∗∗ @ f i l e p l u g i n s / t ime s t e p p e r / S t ewa r tT r i n k l e /STProx . h

∗ The Stewar t Tr in k l e Prox

∗ @author : Jeremy Betz

∗ @ingroup : STStepper

∗/

#pragma once

#include ” StewartTr ink lePlug in . h”

using namespace DVC;

/∗∗
∗ The S t ewar tTr ink l eProx t ime s t e p p e r c l a s s

∗ e x t end s t h e S t ewa r tT r i n k l e S t e p p e r c l a s s and f o rmu l a t e s t h e

∗ @ingroup : STStepper

∗/
class StewartTrinkleProx : public StewartTr ink leStepper

{
public :

StewartTrinkleProx ( ) ;

˜ StewartTrinkleProx ( ) ;

void r e f r e s h ( const PrefMap & pr e f s ) ;

const std : : s t r i n g &getName ( ) const ;

bool pluginStepForward ( Input& input ) ;

int debug ;

private :

bool formNormalProx ( ) ; // Form the data s t r u c t u r e f o r normal prox s o l v e r

void i n i tProxBod ie s ( ) ; // Form the data s t r u c t u r e f o r t h e dynamica l b o d i e s

// Update t h e s a t e based on the ou tpu t o f t h e Prox

void recordDynamicProx ( ) ;

Prox So lver ∗proxSolver ;

} ;

B.1.2 STProx.cpp

/∗∗ @ f i l e p l u g i n s / t ime s t e p p e r / S t ewa r tT r i n k l e /STProx . cpp

∗ This f i l e c on t a i n s S t ewa r tT r i n k l e Prox p l u g i n imp lementa t ion

∗ @author : Jeremy Betz

∗ @ingroup : STStepper

∗/
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#include ”STProx . h”

#include ” ForceCont ro l l e r . h”

#include ” Un i l a t e r a lCons t r a i n t . h”

#include <s t d i o . h>

#include <stdexcept>

/∗∗
∗ De f au l t c o n s t r u c t o r .

∗/
StewartTrinkleProx : : StewartTrinkleProx ( ) : StewartTr ink leStepper ( )

{
m integrat ionOrder = FIRST ORDER; // ST Prox i s v e l o c i t y based , so i n t e g r a t i o n order i s 1

}

/∗∗
∗ Des t ru c t o r . Clean up the data .

∗/
StewartTrinkleProx : : ˜ StewartTrinkleProx ( )

{

}

void StewartTrinkleProx : : r e f r e s h ( const PrefMap & pr e f s )

{
StewartTr ink leStepper : : r e f r e s h ( p r e f s ) ; // c a l l super ’ s r e f r e s h method

// Create an easy to use p o i n t e r t h a t c a s t s t h e c pSo l v e r as a g en e r i c Prox So l v e r

proxSolver = ( static cast<Prox Solver ∗>(m cpSolver ) ) ;

// g e t t h e t ime s t e p p e r s p e c i f i c s e t t i n g s

// s t d : : s t r i n g p l u g inPa th = GetP lug inPre fPath ( ) ;

//m useSparse = p r e f s . g e t b o o l ( p l u g inPa th + ”/ useSpar seMatr i x ”) ;

}

bool StewartTrinkleProx : : pluginStepForward ( Input& input )

{
// Determines t h e i n d e x i n g scheme among o t h e r d u t i e s ( l i k e computing m numConstrainedBodies )

TimeStepper : : c a l cu l a t eMat r i x Ind i c e s ( ) ;

// Only need to f o rmu l a t e i f t h e r e i s a t l e a s t one c on s t r a i n e d body

i f ( m numConstrainedBodies > 0)

{

// Te l l t h e s o l v e r t h e s t e p s i z e ( and o t h e r i n i t t a s k s l a t e r ?)

proxSolver−>i n i tProx ( m stepSize , m co e f f i c i e n tF r i c t i o n , m simTime , m gravity ) ;

// Put data i n t o d a t a s t r u c t u r e s

proxSolver−>populateProxDataStructure ( m dynamicalBodies , m co l l i s i o n s , m numConstrainedBodies ,

m numContacts ) ;

// So l v e u s ing on l y normal impu l s e s

proxSolver−>so lveProx ( ) ;

recordDynamicProx ( ) ;

}

// update t h e dynamica l b o d i e s t h a t have no c o n s t r a i n t s u s ing t h e TimeStepper c l a s s ’ f u n c t i o n

this−>UpdateFal l ingBodies ( ) ;
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return true ; // I f we made i t here , i t was a s u c c e s s f u l s t e p

}

void StewartTrinkleProx : : recordDynamicProx ( )

{

DVC: : Vector<REAL> nu (3) ;

// Now i t e r a t e th rough each body t h a t needs to be updated

std : : l i s t <DynamicalBody ∗>:: i t e r a t o r bodyItr = m dynamicalBodies−>begin ( ) ;

for ( ; bodyItr != m dynamicalBodies−>end ( ) ; ++bodyItr )

{
DynamicalBody ∗b = ∗bodyItr ;

i f ( ! ( b−>I s I nC o l l i s i o n ( ) | | b−>I s Jo in t ed ( ) | | b−>HasGenera lUn i l a te ra lConst ra int s ( ) ) )

{ // f r e e f a l l body

continue ;

}
unsigned int index = b−>GetWrenchRowIndex ( ) /3 ;

// Get v e l o c i t y o f body ’ index ’ from the proxSo l v e r , save i t in nu

proxSolver−>getProxBodyNu ( index ,&nu) ;

b−>SetNu (nu) ;

TimeStepper : : I n t e g r a t e (b , m integrat ionOrder ) ;

}

}

// The f o l l o w i n g methods are r e q u i r e d f o r a l l p l u g i n s //

/// Returns t h e name o f t h e p l u g i n

/// @return A s t r i n g c on t a i n i n g t h e p l u g i n ’ s name

const std : : s t r i n g & StewartTrinkleProx : : getName ( ) const

{
stat ic std : : s t r i n g sName( ”Stewart−Trink le Prox Function Time Stepper ” ) ;

return sName ;

}

/// Re t r i e v e t h e eng ine v e r s i o n we ’ re go ing to expec t , t o p r e v en t

/// l o a d i n g o f ou t da t ed p l u g i n s

/// @return the v e r s i o n o f t h e eng ine when t h i s p l u g i n was compi l ed .

extern ”C” ST PLUGIN API int getEngineVers ion ( )

{
return DvcEngineVersion ;

}

/// Re g i s t e r t h i s p l u g i n to dvc .

/// @param K the hand l e to dvc a l l ow i n g t h e p l u g i n to r e g i s t e r

/// @param pluginName The name o f t h i s p l u g i n

extern ”C” ST PLUGIN API void r e g i s t e rP l u g i n ( DvcKernel &K, const std : : s t r i n g & pluginName )

{
StewartTrinkleProx∗ ptr = new StewartTrinkleProx ( ) ;

ptr−>SetPluginName ( pluginName ) ;

K. getTimeStepperServer ( ) . addTimeStepper ( ptr ) ;

}

B.2 Prox Solvers

B.2.1 CPSolverServer.h

The relevant section of code is:
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/∗∗
∗ Clas s Prox So l v e r . T e c hn i c a l l y not a CP Solver , bu t e a s i e r to t r e a t i t as one

∗/

// ∗∗∗ Prox So l v e r C la s s

class Prox Solver : public CP Solver

{
public :

DVC ENGINE API virtual ˜Prox Solver ( )

{}

// Conf i gure s e t t i n g s f o r prox s o l v e r ( so far , on l y s t e p s i z e )

DVC ENGINE API virtual void i n i tProx (double m stepSize , double m coe f fF r i c t i on , double

m simTime , double m gravity ) { s t epS i z e = m stepSize ; c o e f f F r i c t i o n = m coe f fF r i c t i on ;

simTime = m simTime ; g rav i ty = m gravity ;}
// Popu la t e Data S t r u c t u r e s ( Wi l l be very d i f f e r e n t be tween CPU/GPU se t u p s )

DVC ENGINE API virtual bool populateProxDataStructure ( const std : : l i s t <DynamicalBody ∗> ∗
m dynamicalBodies ,

const std : : l i s t <DvcCol l i s ionResu l tPtr> ∗m co l l i s i o n s ,

s i z e t m numConstrainedBodies , s i z e t m numContacts ) {return fa l se ;}
// Used as primary s o l v e r f u n c t i o n

DVC ENGINE API virtual bool so lveProx ( ) {return fa l se ;}

// Need to put t h i s f u n c t i o n in here , s i n c e Pro x So l v e r s can use d i f f e r e n t data s t u r c t u r e s

// and b u i l d i n g in t e rmed i a r y data s t r u c t u r e s would be w a s t e f u l

// Given an index f o r a body , w i l l r e t u rn th e b o d i e s updated v e l o c i t y . This can then be

used by t he t ime s t e p p e r to update t h e sys tem

DVC ENGINE API virtual bool getProxBodyNu ( int index , DVC: : Vector<REAL> ∗nu) {return fa l se

;}
protected :

double s t epS i z e ; // Time between t ime s t e p s

double c o e f f F r i c t i o n ; // C o e f f i c i e n t o f f r i c t i o n

double simTime ; // Current t ime s t e p

double g rav i ty ; // World g r a v i t y

s i z e t numContacts ;

s i z e t numConstrainedBodies ;

} ;

B.2.2 ProxSerial

B.2.2.1 proxSerialDatastruct.h

//#d e f i n e SINGLE MODE

//#de f i n e DOUBLE MODE

#ifde f SINGLE MODE

typedef f loat FULL;

//#d e f i n e ALIGNMENT SIZE 16

#else

typedef double FULL;

#endif

// ∗∗∗ Data t y p e s f o r p r o x s o l v e r

struct normalProx t {
FULL Gn1 [ 3 ] ; // Normal i n f o from G n f o r body 1

FULL Gn2 [ 3 ] ; // Normal i n f o from G n f o r body 2

// doub l e pos [ 3 ] ; // X,Y, Theta p o s i t i o n ( unneeded ?)

FULL gap n ;

//FULL s t e p s i z e ; // Redundant ? ( Shou ld p r o b a b l y be pas sed to GPU Kerne l v i a argument )

FULL r ;

FULL p n ;

//FULL d e l a s s u s [ 3 ] ; // Probab l y unneeded ?
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// doub l e r h o n c on s t ; // The pa r t s o f rho n t h a t don ’ t change dur ing t ime s t e p s

FULL convergeError ;

int b1index ; // wrenchRowIndex / 3 o f b1

int b2index ; // wrenchRowIndex / 3 o f b2

bool converged ;

} ;
struct proxBody t {

FULL nu [ 3 ] ; // Ve l o c i t y a t l

FULL nu lp1 [ 3 ] ; // Ve l o c i t y a t l +1

FULL p ext [ 3 ] ; // Pext

FULL mass ;

FULL mInert ia ; // moment o f i n e r t i a

// doub l e m inv ; // = 1/mass

// doub l e i i n v ; // = 1/ mIner t ia

} ;
struct f r i c t i o nP r o x t {

FULL Gf1 [ 3 ] ; // Normal i n f o from G n f o r body 1

FULL Gf2 [ 3 ] ; // Normal i n f o from G n f o r body 2

// doub l e pos [ 3 ] ; // X,Y, Theta p o s i t i o n ( unneeded ?)

//FULL gap n ;

//FULL s t e p s i z e ; // Redundant ? ( Shou ld p r o b a b l y be pas sed to GPU Kerne l v i a argument )

FULL r ;

FULL p f ;

//FULL d e l a s s u s [ 3 ] ; // Probab l y unneeded ?

// doub l e r h o n c on s t ; // The pa r t s o f rho n t h a t don ’ t change dur ing t ime s t e p s

FULL convergeError ;

int b1index ; // wrenchRowIndex / 3 o f b1

int b2index ; // wrenchRowIndex / 3 o f b2

bool converged ;

} ;

B.2.2.2 proxSerial.h

/∗∗ @ f i l e p l u g i n s / p r o xSo l v e r

∗
∗ This f i l e c on t a i n s

∗ @author : Jeremy Betz

∗ @ingroup : p r o xSo l v e r

∗/

#ifndef PROX SERIAL PLUGIN H

#define PROX SERIAL PLUGIN H

#include <s t r ing>

#include ”DvcKernel . h”

#include ” proxSe r i a lData s t ruc t . h”

#ifde f WIN32

#ifde f PROX SERIAL PLUGIN EXPORTS

#de f i n e PROX SERIAL PLUGIN API d e c l s p e c ( d l l e xpo r t )

#else

#de f i n e PROX SERIAL PLUGIN API d e c l s p e c ( d l l impor t )

#endif

// Linux

#else

#de f i n e PROX SERIAL PLUGIN API

#endif

using namespace DVC;

/∗∗
∗ c l a s s P r o x S e r i a l

∗ @ingroup : P r o x S e r i a l

∗/
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class Prox Se r i a l : public Prox Solver {
public :

P rox Se r i a l ( ) ;

virtual ˜ Prox Se r i a l ( ) ;

const std : : s t r i n g &getName ( ) const ; // ( Shou ld f i g u r e out a way to check i f a p l u g i n i s prox

based us ing name)

virtual void r e f r e s h ( const DVC: : PrefMap& pr e f s ) ; // Data s t r u c t u r e s b u i l t here ( so t h ey don ’ t

need to be r e b u i l t e v e ry t ime s t e p )

// FROM Prox So l v e r

bool populateProxDataStructure ( const std : : l i s t <DynamicalBody ∗> ∗m dynamicalBodies ,

const std : : l i s t <DvcCol l i s ionResu l tPtr> ∗m co l l i s i o n s ,

s i z e t m numConstrainedBodies , s i z e t m numContacts ) ;

bool so lveProx ( ) ; // I n t e r f a c e from Prox So l v e r

bool getProxBodyNu ( int index , DVC: : Vector<REAL> ∗nu) ;

private :

// f o r popu l a t eProxDa taS t ruc tu r e :

virtual void i n i tProxBod ie s ( const std : : l i s t <DynamicalBody ∗> ∗m dynamicalBodies ) ;

virtual void formNormalProx ( const std : : l i s t <DvcCol l i s ionResu l tPtr> ∗m co l l i s i o n s ) ;

virtual void formFrict ionProx ( const std : : l i s t <DvcCol l i s ionResu l tPtr> ∗m co l l i s i o n s ) ;

// f o r s o l v eProx :

virtual bool ca l cu la teR ( ) ;

// f o r c a l c u l a t eR :

virtual bool ca l cu la t eR ichardson ( ) ;

virtual bool c a l c u l a t e J a c ob i ( ) ;

// So l v e t h e prox f un c t i o n

virtual bool solveLCPProx (bool f r i c t i o n ) ;

// So l v e t h e normal componenet o f t h e prox f un c t i o n

virtual bool solveLCPProxNormal ( int index ) ;

// So l v e t h e f r i c t i o n a l componenet o f t h e prox f un c t i o n

virtual bool solveLCPProxFrict ion ( int index ) ;

// i f sim d i v e r g e s , r e s e t t o s t a r t p o i n t

virtual void resetTimestep ( ) ;

// Take impu l s e s from l a s t t imes t ep , and app l y them to b o d i e s

virtual bool updateBodyNu ( ) ; // ( can be o v e rw r i t t e n w i th GPU code ?)

// Check t h e c o l l i s i o n d a t a s t r u c t u r e f o r convergence

virtual bool checkConverge ( ) ; // Wi l l p r o b a b l y be done much d i f f e r e n t l y w i th GPU code

// v i r t u a l b o o l solveLCPProx ( ) ; // So l v e one i t e r a t i o n f o r i n t e r−body impu l s e s

normalProx t ∗normalProx ;

proxBody t ∗proxBody ;

f r i c t i o nP r o x t ∗ f r i c t i o nP r ox ;

// doub l e simTime ;

// Values from se tup ( r e f r e s h f un c t i o n / prefmap )

unsigned int maxBodies ;

unsigned int maxContacts ;

int solveMode ;

FULL re l axCoe f f ; // a l s o known as omega

int debug ;

unsigned int maxIters ;

FULL p nLimit ;

bool overva lue ;

FULL re l axCoe f fOr i g ;

FULL maxItersOrig ;

} ;

#endif // PROX SERIAL PLUGIN H

B.2.2.3 proxSerial.cpp

/∗∗ @defgroup ∗∗∗ s o l v e r p l u g i n
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∗ @ingroup c p s o l v e r

∗ Group ∗∗∗ i s a subgroup o f c p s o l v e r

∗/

/∗∗ @ f i l e p l u g i n s / . cpp

∗ The ∗∗∗ s o l v e r p l u g i n

∗ This f i l e c on t a i n s t h e ∗∗∗ s o l v e r p l u g i n imp lementa t ion

∗ @author : Jeremy Betz

∗ @ingroup :

∗/

#include ” p roxSe r i a l . h”

#include <s t r ing>

#include <fstream>

#include <iostream>

#include <ForceCont ro l l e r . h>

#define convergeNormal −1e−6
#define conve rgeFr i c t i on 1e−6
#define PN LIMIT

#define p nLimitDefault 1 e5

/∗∗
∗ De f au l t c o n s t r u c t o r .

∗/
Prox Se r i a l : : P rox Se r i a l ( )

{
// Se t v a l u e s to d e f a u l t s t h a t w i l l cause p r e d i c t a b l e b r e a k i n g i f not g i v en proper v a l u e s ( in

r e f r e s h ( ) )

proxBody = 0 ;

normalProx = 0 ;

maxBodies = 0 ;

maxContacts = 0 ;

solveMode = 0 ;

r e l axCoe f f = 0 ;

proxBody = NULL;

normalProx = NULL;

f r i c t i o nP r ox = NULL;

debug = 0 ;

}

Prox Se r i a l : : ˜ P rox Se r i a l ( )

{
i f ( proxBody != NULL) {delete proxBody ; proxBody = NULL;}
i f ( normalProx != NULL) {delete normalProx ; normalProx = NULL;}
i f ( f r i c t i o nP r ox != NULL) {delete f r i c t i o nP r ox ; f r i c t i o nP r ox = NULL;}

}

void Prox Se r i a l : : r e f r e s h ( const PrefMap & pr e f s ) {

p r i n t f ( ”debug qq %d\n” , s izeof ( normalProx t ) ) ;

std : : s t r i n g pluginPath = GetPluginPrefPath ( ) ;

maxBodies = p r e f s . g e t i n t ( pluginPath + ”/maxBodies” ) ;

i f ( proxBody != NULL) {delete proxBody ;}
i f (maxBodies < 1){ maxBodies = 10 ; p r i n t f ( ” Inva l i d number o f maxBodies , s e t t i n g to 1 0 . . . \ n” )

;}
proxBody = new proxBody t [ maxBodies ] ;

maxContacts = p r e f s . g e t i n t ( pluginPath + ”/maxContacts” ) ;

i f ( normalProx != NULL) {delete normalProx ;}
i f ( f r i c t i o nP r ox != NULL) {delete f r i c t i o nP r ox ;}
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i f (maxContacts < 1){ maxContacts = 100 ; p r i n t f ( ” Inva l i d number o f maxContacts , s e t t i n g to

1 0 0 . . . \ n” ) ;}
normalProx = new normalProx t [ maxContacts ] ;

f r i c t i o nP r ox = new f r i c t i o nP r o x t [ maxContacts ] ;

// shou l d be changed to use enum

std : : s t r i n g s o l v eS t r = p r e f s . g e t s t r i n g ( pluginPath + ”/solveMode” ) ;

i f ( s o l v eS t r == ” r i chardson ” )

solveMode = 1 ;

else i f ( s o l v eS t r == ” ja cob i ” )

solveMode = 2 ;

else i f ( s o l v eS t r == ” g au s s s e i d e l ” )

solveMode = 3 ;

else {
solveMode = 1 ;

p r i n t f ( ” Inva l i d solveMode , us ing r i chardson . . . \ n” ) ;

}

overva lue = fa l se ;

maxIters = p r e f s . g e t i n t ( pluginPath + ”/maxIters ” ) ;

i f ( maxIters < 1){ maxIters = 500 ; p r i n t f ( ” Inva l i d number o f maxIters , s e t t i n g to 5 0 0 . . . \ n” ) ;}
maxItersOrig = maxIters ;

debug = p r e f s . g e t i n t ( pluginPath + ”/debug” ) ;

r e l axCoe f f = p r e f s . ge t doub le ( pluginPath + ”/ r e l axCoe f f ” ) ; // a l s o known as omega

i f ( r e l axCoe f f == 0) { p r i n t f ( ” Inva l i d re l axCoe f f , s e t t i n g to 1 . . . \ n” ) ; r e l axCoe f f = 1 ; } //

r e l a xCo e f f can ’ t be 0 , so s e t to a d e f a u l t o f 1

r e l axCoe f fOr i g = re l axCoe f f ;

p nLimit = p r e f s . ge t doub le ( pluginPath + ”/p nLimit ” ) ;

// i f no l im i t , w i l l d e f a u l t t o 0 , and not be used

}

bool Prox Se r i a l : : populateProxDataStructure ( const std : : l i s t < DynamicalBody∗ >∗ m dynamicalBodies

,

const std : : l i s t < DvcCol l i s i onResu l tPtr >∗ m co l l i s i o n s ,

s i z e t m numConstrainedBodies , s i z e t m numContacts )

{
numConstrainedBodies = m numConstrainedBodies ;

numContacts = m numContacts ;

// Popu la t e t h e d a t a s t r u c t u r e f o r t h e b o d i e s

i n i tProxBod ie s ( m dynamicalBodies ) ;

// Popu la t e t h e d a t a s t r u c t u r e f o r t h e p o t e n t i a l c o l l i s i o n s i t e s

formNormalProx ( m c o l l i s i o n s ) ;

i f ( c o e f f F r i c t i o n != 0 . 0 ) {
formFrict ionProx ( m c o l l i s i o n s ) ;

}
return true ;

}

void Prox Se r i a l : : in i tProxBod ie s ( const std : : l i s t < DynamicalBody∗ >∗ m dynamicalBodies )

{
DVC: : Vector<REAL> newForce (3) ;

DVC: : Vector<REAL> newForceSum (3) ;

std : : l i s t <DynamicalBody ∗>:: c o n s t i t e r a t o r bodyItr = m dynamicalBodies−>begin ( ) ;

for ( ; bodyItr != m dynamicalBodies−>end ( ) ; ++bodyItr )

{
DynamicalBody ∗b = ∗bodyItr ;

i f ( ! ( b−>I sConst ra ined ( ) ) ) // Body in f r e e f a l l

{ // f r e e f a l l body , not f o rmu l a t ed in ST LCP

continue ;

}
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newForceSum . c l e a r ( ) ;

unsigned int rowIndex = b−>GetWrenchRowIndex ( ) /3 ;

// I n i t d e f a u l t v a l u e s

proxBody [ rowIndex ] . p ext [ 0 ] = 0 ;

proxBody [ rowIndex ] . p ext [ 1 ] = 0 ;

proxBody [ rowIndex ] . p ext [ 2 ] = 0 ;

i f (b−>I sForceCont ro l l ed ( ) )

{ // sum up the c o n t r i b u t i n g f o r c e s from each f o r c e c o n t r o l l e r

const std : : l i s t <const ForceCont ro l l e r ∗>& fo r c eC t r l s = b−>GetForceContro l l e r s ( ) ;

std : : l i s t <const ForceCont ro l l e r ∗>:: c o n s t i t e r a t o r i t r = f o r c eC t r l s . begin ( ) ;

for ( ; i t r != f o r c eC t r l s . end ( ) ; ++i t r ){
newForce . c l e a r ( ) ;

(∗ i t r )−>GetForce ( simTime , newForce , b−>GetQ( ) , b−>GetNu ( ) ) ;

newForceSum += newForce ;

}
// add the impu l s e s from the c o n t r o l l e r s

proxBody [ rowIndex ] . p ext [ 0 ] = s t epS i z e ∗newForceSum [ 0 ] ;

proxBody [ rowIndex ] . p ext [ 1 ] = s t epS i z e ∗newForceSum [ 1 ] ;

proxBody [ rowIndex ] . p ext [ 2 ] = s t epS i z e ∗newForceSum [ 2 ] ;

}

// add the g r a v i t a t i o n a l f o r c e

proxBody [ rowIndex ] . p ext [ 1 ] −= grav i ty ∗ s t epS i z e ∗ b−>GetMass ( ) ;

// Get o t h e r i n f o f o r prox s o l v e r

proxBody [ rowIndex ] . mass = b−>GetMass ( ) ;

proxBody [ rowIndex ] . mInert ia = b−>GetMomentInertia ( ) ;

proxBody [ rowIndex ] . nu [ 0 ] = b−>GetNu ( ) (0) ;

proxBody [ rowIndex ] . nu [ 1 ] = b−>GetNu ( ) (1) ;

proxBody [ rowIndex ] . nu [ 2 ] = b−>GetNu ( ) (2) ;

}
}

void Prox Se r i a l : : formNormalProx ( const std : : l i s t < DvcCol l i s i onResu l tPtr >∗ m co l l i s i o n s )

{
int i = 0 ;

DVC: : Vector<REAL> n (2) , r (2 ) , Gn vec (3) ;

std : : l i s t <DvcCol l i s ionResu l tPtr > : : c o n s t i t e r a t o r c on t a c t I t r ;

for ( c on t a c t I t r = m co l l i s i o n s−>begin ( ) ; c on t a c t I t r != m co l l i s i o n s−>end ( ) ; ++con t a c t I t r )

{
const DvcCol l i s i onResu l tPtr &colRes = ∗ c on t a c t I t r ;

// Get t h e two b od i e s in c on t a c t .

Body ∗ m1 = colRes−>b1 ;

Body ∗ m2 = colRes−>b2 ;

// San i t y Check : Shou ld never be c o l l i s i o n che c k in g between 2 s t a t i c o b j e c t s

a s s e r t ( ! ( m1−>GetBodyType ( )==BODY OBSTACLE && m2−>GetBodyType ( )==BODY OBSTACLE ) ) ;

// Get t h e normal and t a n g e n t i a l i n f o rma t i on

n (0) = colRes−>normalB1toB2 [ 0 ] ;

n (1) = colRes−>normalB1toB2 [ 1 ] ;

// Se t Timestep s i z e ( h i g h l y redundant in format ion , remove l a t e r ?)

// normalProx [ i ] . s t e p s i z e = s t e p S i z e ;

normalProx [ i ] . convergeError = 10000;

normalProx [ i ] . converged = fa l se ;

// I n i t p n to 0

normalProx [ i ] . p n = 0 ;

// Get each body ’ s row l o c a t i o n in t he wrench and each body ’ s p o s i t i o n

i f ( m1−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e
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//M1RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M1Pos = static cast< const DynamicalBody ∗ > ( m1 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M1Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetNu ( ) ;

r (0 ) = colRes−>b1ContactLoc [ 0 ] − M1Pos [ 0 ] ;

r (1 ) = colRes−>b1ContactLoc [ 1 ] − M1Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

normalProx [ i ] . Gn1 [ 0 ] = n (0) ;

normalProx [ i ] . Gn1 [ 1 ] = n (1) ;

normalProx [ i ] . Gn1 [ 2 ] = r . cross2D (n) ;

normalProx [ i ] . gap n = colRes−>d i s tance ;

/∗Gn vec (0) = normalProx [ i ] . Gn [ 0 ] ; Gn vec (1) = normalProx [ i ] . Gn [ 1 ] ; Gn vec (2) = normalProx [ i

] . Gn [ 2 ] ;

normalProx [ i ] . Nu n = Gn vec . do t (M1Nu) ;

normalProx [ i ] . mass = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetMass ( ) ;

normalProx [ i ] . i n e r t i a = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetMomentInert ia ( ) ; ∗/
normalProx [ i ] . b1index = static cast< const DynamicalBody ∗ > ( m1 )−>GetWrenchRowIndex ( ) /3 ;

}
else normalProx [ i ] . b1index = −1;

i f ( m2−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e

//M2RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M2Pos = static cast< const DynamicalBody ∗ > ( m2 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M2Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetNu ( ) ;

r (0 ) = colRes−>b2ContactLoc [ 0 ] − M2Pos [ 0 ] ;

r (1 ) = colRes−>b2ContactLoc [ 1 ] − M2Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

n (0) = −n (0) ;

n (1) = −n (1) ;

normalProx [ i ] . Gn2 [ 0 ] = n (0) ;

normalProx [ i ] . Gn2 [ 1 ] = n (1) ;

normalProx [ i ] . Gn2 [ 2 ] = r . cross2D (n) ;

normalProx [ i ] . gap n = colRes−>d i s tance ;

/∗Gn vec (0) = normalProx [ i ] . Gn [ 0 ] ; Gn vec (1) = normalProx [ i ] . Gn [ 1 ] ; Gn vec (2) = normalProx [ i

] . Gn [ 2 ] ;

normalProx [ i ] . Nu n = Gn vec . do t (M2Nu) ;

normalProx [ i ] . mass = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetMass ( ) ;

normalProx [ i ] . i n e r t i a = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetMomentInert ia ( ) ; ∗/
normalProx [ i ] . b2index = static cast< const DynamicalBody ∗ > ( m2 )−>GetWrenchRowIndex ( ) /3 ;

}
else normalProx [ i ] . b2index = −1;

//++ co l I n d e x ; // Next column

i++; // Po s i t i o n in array

}
return ;

}

void Prox Se r i a l : : formFrict ionProx ( const std : : l i s t < DvcCol l i s i onResu l tPtr >∗ m co l l i s i o n s )

{
int i = 0 ;

DVC: : Vector<REAL> n (2) , r (2 ) , Gf vec (3) ;

std : : l i s t <DvcCol l i s ionResu l tPtr > : : c o n s t i t e r a t o r c on t a c t I t r ;

for ( c on t a c t I t r = m co l l i s i o n s−>begin ( ) ; c on t a c t I t r != m co l l i s i o n s−>end ( ) ; ++con t a c t I t r )

{
const DvcCol l i s i onResu l tPtr &colRes = ∗ c on t a c t I t r ;

// Get t h e two b od i e s in c on t a c t .

Body ∗ m1 = colRes−>b1 ;
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Body ∗ m2 = colRes−>b2 ;

// San i t y Check : Shou ld never be c o l l i s i o n che c k in g between 2 s t a t i c o b j e c t s

a s s e r t ( ! ( m1−>GetBodyType ( )==BODY OBSTACLE && m2−>GetBodyType ( )==BODY OBSTACLE ) ) ;

// Get t h e normal and t a n g e n t i a l i n f o rma t i on

// ( x ’ = y ; y ’ = −x )

n (0) = colRes−>normalB1toB2 [ 1 ] ;

n (1) = −(colRes−>normalB1toB2 [ 0 ] ) ;

// Se t Timestep s i z e ( h i g h l y redundant in format ion , remove l a t e r ?)

f r i c t i o nP r ox [ i ] . convergeError = 10000;

f r i c t i o nP r ox [ i ] . converged = fa l se ;

// Get each body ’ s row l o c a t i o n in t he wrench and each body ’ s p o s i t i o n

i f ( m1−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e

//M1RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M1Pos = static cast< const DynamicalBody ∗ > ( m1 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M1Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetNu ( ) ;

r (0 ) = colRes−>b1ContactLoc [ 0 ] − M1Pos [ 0 ] ;

r (1 ) = colRes−>b1ContactLoc [ 1 ] − M1Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

f r i c t i o nP r ox [ i ] . Gf1 [ 0 ] = n (0) ;

f r i c t i o nP r ox [ i ] . Gf1 [ 1 ] = n (1) ;

f r i c t i o nP r ox [ i ] . Gf1 [ 2 ] = r . cross2D (n) ;

f r i c t i o nP r ox [ i ] . b1index = static cast< const DynamicalBody ∗ > ( m1 )−>GetWrenchRowIndex ( )

/3 ;

}
else f r i c t i o nP r ox [ i ] . b1index = −1;

i f ( m2−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e

//M2RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M2Pos = static cast< const DynamicalBody ∗ > ( m2 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M2Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetNu ( ) ;

r (0 ) = colRes−>b2ContactLoc [ 0 ] − M2Pos [ 0 ] ;

r (1 ) = colRes−>b2ContactLoc [ 1 ] − M2Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

n (0) = −n (0) ;

n (1) = −n (1) ;

f r i c t i o nP r ox [ i ] . Gf2 [ 0 ] = n (0) ;

f r i c t i o nP r ox [ i ] . Gf2 [ 1 ] = n (1) ;

f r i c t i o nP r ox [ i ] . Gf2 [ 2 ] = r . cross2D (n) ;

f r i c t i o nP r ox [ i ] . b2index = static cast< const DynamicalBody ∗ > ( m2 )−>GetWrenchRowIndex ( )

/3 ;

}
else f r i c t i o nP r ox [ i ] . b2index = −1;

//++ co l I n d e x ; // Next column

i++; // Po s i t i o n in array

}
return ;

}

bool Prox Se r i a l : : so lveProx ( )

{
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// r e s e t back to d e f a u l t s (more un s t a b l e , bu t f a s t e r )

// maxI t e r s = maxI t e r sOr ig ;

// r e l a xCo e f f = r e l a xCo e f fO r i g ;

ca l cu la teR ( ) ; // Ca l c u l a t e va lue s , u s ing method s p e c i f i e d in XML

updateBodyNu ( ) ; // Update t h e b o d i e s v e l o c i t y to i n i t i a l i z e nu l p1

bool f r i c t i o n = ( c o e f f F r i c t i o n != 0 . 0 ) ; // compare f r i c t i o n to doub l e once , save as boo l ean (

p r o b a b l y more e f f i c i e n t ?)

int k = 0 ;

do {
// debugg ing code

k++;

i f ( ! ( k%5) && ( debug==2)){
p r i n t f ( ”%d th loop\n” , k ) ;

}
solveLCPProx ( f r i c t i o n ) ;

i f ( overva lue && p nLimit ){ // i f p nLimi t s e t and went o v e r v a l u e

resetTimestep ( ) ;

k = 0 ;

// ha l v e t h e r e l a xCo e f f t o i n c r e a s e s t a b i l i t y

r e l axCoe f f = r e l axCoe f f /2 ;

// doub l e t h e maxI t e r s to compensate f o r i n c r e a s e d s o l u t i o n t ime s t e p

maxIters = maxIters ∗2 ;

p r i n t f ( ”System divergence detected at %f on i t e r %d , s e t t i n g r e l axCoe f f to %f \n” , simTime , k

, r e l axCoe f f ) ;

}
updateBodyNu ( ) ;

} while ( ( ! checkConverge ( ) ) && (k<maxIters ) ) ; // While i t hasn ’ t converged and k i s l e s s than

the max a l l owed i t e r a t i o n s

i f ( debug==3){
p r i n t f ( ” f i n i s h e d at %d i t e r s \n” , k ) ;

}
return true ;

}

void Prox Se r i a l : : resetTimestep ( )

{
for (unsigned int i = 0 ; i < numContacts ; i++){

normalProx [ i ] . p n = 0 ;

normalProx [ i ] . converged = fa l se ;

}
i f ( c o e f f F r i c t i o n != 0 . 0 ) {

for (unsigned int i = 0 ; i < numContacts ; i++){
f r i c t i o nP r ox [ i ] . p f = 0 ;

f r i c t i o nP r ox [ i ] . converged = fa l se ;

}
}
ca l cu la teR ( ) ;

overva lue = fa l se ;

}

bool Prox Se r i a l : : getProxBodyNu ( int index , DVC: : Vector<REAL> ∗nu)

{

(∗nu) [ 0 ] = proxBody [ index ] . nu lp1 [ 0 ] ;

(∗nu) [ 1 ] = proxBody [ index ] . nu lp1 [ 1 ] ;

(∗nu) [ 2 ] = proxBody [ index ] . nu lp1 [ 2 ] ;

return true ;

}

bool Prox Se r i a l : : solveLCPProxNormal ( int index )

{
REAL p n s t a r = 0 ;
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REAL rho = 0 ;

for ( int j =0; j <1; j++){ // don ’ t need now

p n s t a r = 0 ;

rho = 0 ;

i f ( normalProx [ index ] . b1index != −1){
rho += normalProx [ index ] . Gn1 [ 0 ] ∗ proxBody [ normalProx [ index ] . b1index ] . nu lp1 [ 0 ]

+ normalProx [ index ] . Gn1 [ 1 ] ∗ proxBody [ normalProx [ index ] . b1index ] . nu lp1 [ 1 ]

+ normalProx [ index ] . Gn1 [ 2 ] ∗ proxBody [ normalProx [ index ] . b1index ] . nu lp1 [ 2 ] ;

}
i f ( normalProx [ index ] . b2index != −1){

rho += normalProx [ index ] . Gn2 [ 0 ] ∗ proxBody [ normalProx [ index ] . b2index ] . nu lp1 [ 0 ]

+ normalProx [ index ] . Gn2 [ 1 ] ∗ proxBody [ normalProx [ index ] . b2index ] . nu lp1 [ 1 ]

+ normalProx [ index ] . Gn2 [ 2 ] ∗ proxBody [ normalProx [ index ] . b2index ] . nu lp1 [ 2 ] ;

}

rho += normalProx [ index ] . gap n/ s t epS i z e ;

// rho += normalProx [ index ] . dGapdTime // I f t h e second o b j e c t i s a k inemat i c body

i f ( ( rho > convergeNormal ) && ( normalProx [ index ] . converged == true ) ){ // Check f o r

convergence

// I f was converged l a s t i t e r a t i o n , j u s t b reak l oop

// p r i n t f (”%d rho in t o l e r anc e , b r e a k i n g \n” , index ) ; ###

break ; // Otherwise , s e t t o t r u e and con t inue to save p n

}
else i f ( rho > convergeNormal ){

normalProx [ index ] . converged = true ;

}
else normalProx [ index ] . converged = fa l se ;

// RHO FINISHED CALCULATING

// CALCULATE P N STAR

p n s t a r = normalProx [ index ] . p n − normalProx [ index ] . r∗ rho ;

// Enforce prox c ond i t i o n (Lambda >= 0)

i f ( p n s t a r < 0)

p n s t a r = 0 ;

#ifde f PN LIMIT

i f ( p nLimit ){ // i f p nLimi t i s s e t , then run check

i f ( p n s t a r > p nLimit ){
overva lue = true ;

}
}

#endif

// Ca l c u l a t e convergeError

REAL cE = p n s t a r − normalProx [ index ] . p n ;

i f ( ( cE − normalProx [ index ] . convergeError ) > 1e−6){
// p r i n t f (”%d cE i n c r e a s i n g %.10 f r a t e %.10 f \n” , index , cE , ( cE − normalProx [ index ] . convergeError

) ) ;

// normalProx [ index ] . r [ 0 ] = normalProx [ index ] . r [ 0 ] / 2 ;

}
// Compare chage o f convergeError ? ( cE vs convergeError )

i f ( ( debug==2)){
// p r i n t f (”%dth con t a c t . rho %.7 f P n new %.5 f Error %.10 f dError %.10 f \n” , index , rho ,

p n s t a r , cE , cE−normalProx [ index ] . convergeError ) ;

}
i f ( debug == 1){ // Pr in t convergence data in easy to use format

// p r i n t f (”%d , %.5 f , %.10 f , %.10 f , %.10 f \n” , index , normalProx [ index ] . r , normalProx [ index ] .

p n , p n s t a r , cE−normalProx [ index ] . convergeError ) ;
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}

// Save new convergeError

normalProx [ index ] . convergeError = cE ;

// Save new p n

normalProx [ index ] . p n = p n s t a r ;

// p r i n t f (”% f \n” , normalProx [ index ] . p n ) ;

}

return true ;

}

// NOT WRITTEN YET ??? ! ! ! ###

bool Prox Se r i a l : : so lveLCPProxFrict ion ( int index )

{
REAL p f s t a r = 0 ;

REAL rho = 0 ;

i f ( normalProx [ index ] . p n == 0 . 0 ) { // i f no normal f o r ce , then f r i c t i o n = 0

f r i c t i o nP r ox [ index ] . p f = 0 ;

f r i c t i o nP r ox [ index ] . converged = true ;

return true ;

}

for ( int j =0; j <1; j++){ // don ’ t need now

p f s t a r = 0 ;

rho = 0 ;

i f ( f r i c t i o nP r ox [ index ] . b1index != −1){
rho += f r i c t i o nP r ox [ index ] . Gf1 [ 0 ] ∗ proxBody [ f r i c t i o nP r ox [ index ] . b1index ] . nu lp1 [ 0 ]

+ f r i c t i o nP r ox [ index ] . Gf1 [ 1 ] ∗ proxBody [ f r i c t i o nP r ox [ index ] . b1index ] . nu lp1 [ 1 ]

+ f r i c t i o nP r ox [ index ] . Gf1 [ 2 ] ∗ proxBody [ f r i c t i o nP r ox [ index ] . b1index ] . nu lp1 [ 2 ] ;

}
i f ( f r i c t i o nP r ox [ index ] . b2index != −1){

rho += f r i c t i o nP r ox [ index ] . Gf2 [ 0 ] ∗ proxBody [ f r i c t i o nP r ox [ index ] . b2index ] . nu lp1 [ 0 ]

+ f r i c t i o nP r ox [ index ] . Gf2 [ 1 ] ∗ proxBody [ f r i c t i o nP r ox [ index ] . b2index ] . nu lp1 [ 1 ]

+ f r i c t i o nP r ox [ index ] . Gf2 [ 2 ] ∗ proxBody [ f r i c t i o nP r ox [ index ] . b2index ] . nu lp1 [ 2 ] ;

}

// rho += f r i c t i o nP r o x [ index ] . g a p f / s t e p S i z e ;

// rho += f r i c t i o nP r o x [ index ] . dGapdTime // I f t h e second o b j e c t i s a k inema t i c body

/∗
i f ( ( abs ( rho ) < c on v e r g eF r i c t i o n ) && ( f r i c t i o nP r o x [ index ] . converged == t ru e ) ){ // Check f o r

convergence

// I f was converged l a s t i t e r a t i o n , j u s t b reak l oop

// p r i n t f (”%d rho in t o l e r anc e , b r e a k i n g \n” , index ) ; ###

break ;// Otherwise , s e t t o t r u e and con t inue to save p f

}
e l s e ∗/ i f ( abs ( rho ) < conve rgeFr i c t i on ){

f r i c t i o nP r ox [ index ] . converged = true ;

}
else f r i c t i o nP r ox [ index ] . converged = fa l se ;

// RHO FINISHED CALCULATING

// CALCULATE p f STAR

p f s t a r = f r i c t i o nP r ox [ index ] . p f − f r i c t i o nP r ox [ index ] . r∗ rho ;

// Enforce prox c ond i t i o n

i f ( p f s t a r < −( c o e f f F r i c t i o n ∗normalProx [ index ] . p n ) ){
p f s t a r = −( c o e f f F r i c t i o n ∗normalProx [ index ] . p n ) ;

f r i c t i o nP r ox [ index ] . converged = true ;

}
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else i f ( p f s t a r > ( c o e f f F r i c t i o n ∗normalProx [ index ] . p n ) ) {
p f s t a r = ( c o e f f F r i c t i o n ∗normalProx [ index ] . p n ) ;

f r i c t i o nP r ox [ index ] . converged = true ;

}
// Ca l c u l a t e convergeError

REAL cE = p f s t a r − f r i c t i o nP r ox [ index ] . p f ;

i f ( ( cE − f r i c t i o nP r ox [ index ] . convergeError ) > 1e−6){
// p r i n t f (”%d cE i n c r e a s i n g %.10 f r a t e %.10 f \n” , index , cE , ( cE − f r i c t i o nP r o x [ index ] .

convergeError ) ) ;

// f r i c t i o nP r o x [ index ] . r [ 0 ] = f r i c t i o nP r o x [ index ] . r [ 0 ] / 2 ;

}
// Compare chage o f convergeError ? ( cE vs convergeError )

i f ( ( debug==2)){
// p r i n t f (”%dth con t a c t . rho %.7 f p f new %.5 f Error %.10 f dError %.10 f \n” , index , rho ,

p f s t a r , cE , cE−f r i c t i o nP r o x [ index ] . convergeError ) ;

}
i f ( debug == 1){ // Pr in t convergence data in easy to use format

// p r i n t f (”%d , %.5 f , %.10 f , %.10 f , %.10 f \n” , index , f r i c t i o nP r o x [ index ] . r , f r i c t i o nP r o x [

index ] . p f , p f s t a r , cE−f r i c t i o nP r o x [ index ] . convergeError ) ;

}

// Save new convergeError

f r i c t i o nP r ox [ index ] . convergeError = cE ;

// Save new p f

f r i c t i o nP r ox [ index ] . p f = p f s t a r ;

// p r i n t f (”% f \n” , f r i c t i o nP r o x [ index ] . p f ) ;

}

return fa l se ;

}

bool Prox Se r i a l : : solveLCPProx (bool f r i c t i o n )

{
/∗ i f ( debug==2){

p r i n t f (” new t ime s t e p %f \n” , simTime ) ;

}∗/

for (unsigned int i =0; i<numContacts ; i++){
solveLCPProxNormal ( i ) ;

i f ( f r i c t i o n ){
solveLCPProxFrict ion ( i ) ;

}
// p r i n t f (” nex t \n”) ;

}
return true ;

}

bool Prox Se r i a l : : updateBodyNu ( )

{
for (unsigned int i = 0 ; i < numConstrainedBodies ; i++){
proxBody [ i ] . nu lp1 [ 0 ] = 0 ;

proxBody [ i ] . nu lp1 [ 1 ] = 0 ;

proxBody [ i ] . nu lp1 [ 2 ] = 0 ;

}
//nu l+1 += loop o f c o l l i s i o n s

for (unsigned int i = 0 ; i < numContacts ; i++){ //Note : nu l p1 i s used as v a l u e o f a p p l i e d

impulse , not v e l o c i t y (mass and mIner t i a not used y e t )

i f ( normalProx [ i ] . b1index != −1){
proxBody [ normalProx [ i ] . b1index ] . nu lp1 [ 0 ] += normalProx [ i ] . Gn1 [ 0 ] ∗ normalProx [ i ] . p n ;

proxBody [ normalProx [ i ] . b1index ] . nu lp1 [ 1 ] += normalProx [ i ] . Gn1 [ 1 ] ∗ normalProx [ i ] . p n ;

proxBody [ normalProx [ i ] . b1index ] . nu lp1 [ 2 ] += normalProx [ i ] . Gn1 [ 2 ] ∗ normalProx [ i ] . p n ;
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}
i f ( normalProx [ i ] . b2index != −1){

proxBody [ normalProx [ i ] . b2index ] . nu lp1 [ 0 ] += normalProx [ i ] . Gn2 [ 0 ] ∗ normalProx [ i ] . p n ;

proxBody [ normalProx [ i ] . b2index ] . nu lp1 [ 1 ] += normalProx [ i ] . Gn2 [ 1 ] ∗ normalProx [ i ] . p n ;

proxBody [ normalProx [ i ] . b2index ] . nu lp1 [ 2 ] += normalProx [ i ] . Gn2 [ 2 ] ∗ normalProx [ i ] . p n ;

}
}
i f ( c o e f f F r i c t i o n != 0 . 0 ) {

for (unsigned int i = 0 ; i < numContacts ; i++){ //Note : nu l p1 i s used as v a l u e o f a p p l i e d

impulse , not v e l o c i t y (mass and mIner t i a not used y e t )

i f ( f r i c t i o nP r ox [ i ] . b1index != −1){
proxBody [ f r i c t i o nP r ox [ i ] . b1index ] . nu lp1 [ 0 ] += f r i c t i o nP r ox [ i ] . Gf1 [ 0 ] ∗ f r i c t i o nP r ox [ i ] . p f ;

proxBody [ f r i c t i o nP r ox [ i ] . b1index ] . nu lp1 [ 1 ] += f r i c t i o nP r ox [ i ] . Gf1 [ 1 ] ∗ f r i c t i o nP r ox [ i ] . p f ;

proxBody [ f r i c t i o nP r ox [ i ] . b1index ] . nu lp1 [ 2 ] += f r i c t i o nP r ox [ i ] . Gf1 [ 2 ] ∗ f r i c t i o nP r ox [ i ] . p f ;

}
i f ( f r i c t i o nP r ox [ i ] . b2index != −1){

proxBody [ f r i c t i o nP r ox [ i ] . b2index ] . nu lp1 [ 0 ] += f r i c t i o nP r ox [ i ] . Gf2 [ 0 ] ∗ f r i c t i o nP r ox [ i ] . p f ;

proxBody [ f r i c t i o nP r ox [ i ] . b2index ] . nu lp1 [ 1 ] += f r i c t i o nP r ox [ i ] . Gf2 [ 1 ] ∗ f r i c t i o nP r ox [ i ] . p f ;

proxBody [ f r i c t i o nP r ox [ i ] . b2index ] . nu lp1 [ 2 ] += f r i c t i o nP r ox [ i ] . Gf2 [ 2 ] ∗ f r i c t i o nP r ox [ i ] . p f ;

}
}

}
// nu l+1 += pex t a l l over m + nu l

for (unsigned int i = 0 ; i < numConstrainedBodies ; i++){
proxBody [ i ] . nu lp1 [ 0 ] = proxBody [ i ] . nu [ 0 ] + ( ( proxBody [ i ] . p ext [ 0 ] + proxBody [ i ] . nu lp1 [ 0 ] ) /

proxBody [ i ] . mass ) ;

proxBody [ i ] . nu lp1 [ 1 ] = proxBody [ i ] . nu [ 1 ] + ( ( proxBody [ i ] . p ext [ 1 ] + proxBody [ i ] . nu lp1 [ 1 ] ) /

proxBody [ i ] . mass ) ;

proxBody [ i ] . nu lp1 [ 2 ] = proxBody [ i ] . nu [ 2 ] + ( ( proxBody [ i ] . p ext [ 2 ] + proxBody [ i ] . nu lp1 [ 2 ] ) /

proxBody [ i ] . mInert ia ) ;

}

return true ;

}

bool Prox Se r i a l : : ca l cu la teR ( )

{
i f ( solveMode == 1) { // Richardson

ca l cu la t eR ichardson ( ) ;

}
else i f ( solveMode == 2) { // Jacob i

c a l c u l a t e J a c ob i ( ) ;

}
else i f ( solveMode == 3) { // Gauss−S e i d e l

p r i n t f ( ”Gauss−Se i d e l not yet implemented , probably going to crash . . . \ n” ) ;

return fa l se ;

}
return true ;

}

bool Prox Se r i a l : : c a l cu la t eR ichardson ( )

{
for (unsigned int i = 0 ; i < numContacts ; i++){

normalProx [ i ] . r = r e l axCoe f f ;

}
i f ( c o e f f F r i c t i o n != 0 . 0 ) {

for (unsigned int i = 0 ; i < numContacts ; i++){
f r i c t i o nP r ox [ i ] . r = r e l axCoe f f ;

}
}

}
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bool Prox Se r i a l : : c a l c u l a t e Ja c ob i ( )

{
for (unsigned int i = 0 ; i < numContacts ; i++){

FULL de l a s su s = 0 ;

i f ( normalProx [ i ] . b1index != −1){
de l a s su s += ( normalProx [ i ] . Gn1 [ 0 ] ∗ normalProx [ i ] . Gn1 [ 0 ] ) /proxBody [ normalProx [ i ] . b1index ] .

mass +

( normalProx [ i ] . Gn1 [ 1 ] ∗ normalProx [ i ] . Gn1 [ 1 ] ) /proxBody [ normalProx [ i ] . b1index ] . mass +

( normalProx [ i ] . Gn1 [ 2 ] ∗ normalProx [ i ] . Gn1 [ 2 ] ) /proxBody [ normalProx [ i ] . b1index ] . mInert ia ;

}
i f ( normalProx [ i ] . b2index != −1){

de l a s su s +=(normalProx [ i ] . Gn2 [ 0 ] ∗ normalProx [ i ] . Gn2 [ 0 ] ) /proxBody [ normalProx [ i ] . b2index ] .

mass +

( normalProx [ i ] . Gn2 [ 1 ] ∗ normalProx [ i ] . Gn2 [ 1 ] ) /proxBody [ normalProx [ i ] . b2index ] . mass +

( normalProx [ i ] . Gn2 [ 2 ] ∗ normalProx [ i ] . Gn2 [ 2 ] ) /proxBody [ normalProx [ i ] . b2index ] . mInert ia ;

}
normalProx [ i ] . r = r e l axCoe f f / de l a s su s ;

}

i f ( c o e f f F r i c t i o n != 0 . 0 ) {
for (unsigned int i = 0 ; i < numContacts ; i++){

FULL de l a s su s = 0 ;

i f ( f r i c t i o nP r ox [ i ] . b1index != −1){
de l a s su s += ( f r i c t i o nP r ox [ i ] . Gf1 [ 0 ] ∗ f r i c t i o nP r ox [ i ] . Gf1 [ 0 ] ) /proxBody [ f r i c t i o nP r ox [ i ] . b1index ] .

mass +

( f r i c t i o nP r ox [ i ] . Gf1 [ 1 ] ∗ f r i c t i o nP r ox [ i ] . Gf1 [ 1 ] ) /proxBody [ f r i c t i o nP r ox [ i ] . b1index ] . mass

+

( f r i c t i o nP r ox [ i ] . Gf1 [ 2 ] ∗ f r i c t i o nP r ox [ i ] . Gf1 [ 2 ] ) /proxBody [ f r i c t i o nP r ox [ i ] . b1index ] .

mInert ia ;

}
i f ( f r i c t i o nP r ox [ i ] . b2index != −1){

de l a s su s +=(f r i c t i o nP r ox [ i ] . Gf2 [ 0 ] ∗ f r i c t i o nP r ox [ i ] . Gf2 [ 0 ] ) /proxBody [ f r i c t i o nP r ox [ i ] . b2index ] .

mass +

( f r i c t i o nP r ox [ i ] . Gf2 [ 1 ] ∗ f r i c t i o nP r ox [ i ] . Gf2 [ 1 ] ) /proxBody [ f r i c t i o nP r ox [ i ] . b2index ] . mass

+

( f r i c t i o nP r ox [ i ] . Gf2 [ 2 ] ∗ f r i c t i o nP r ox [ i ] . Gf2 [ 2 ] ) /proxBody [ f r i c t i o nP r ox [ i ] . b2index ] .

mInert ia ;

}
f r i c t i o nP r ox [ i ] . r = r e l axCoe f f / de l a s su s ;

}
}
return true ;

}

bool Prox Se r i a l : : checkConverge ( ) // r e t u rn t r u e i f sys tem reached convergence

{
bool f r i c t i o n = ( c o e f f F r i c t i o n != 0 . 0 ) ;

for (unsigned int i =0; i<numContacts ; i++){ // Check f o r t o t a l convergence

i f ( ( normalProx [ i ] . converged == fa l se ) | | ( ( f r i c t i o nP r ox [ i ] . converged == fa l se ) &&

f r i c t i o n ) ){
return fa l se ;

}
}
return true ; // I f d idn ’ t r e t u rn f a l s e yet , then must be converged

}

const std : : s t r i n g & Prox Se r i a l : : getName ( ) const {
stat ic std : : s t r i n g sName( ”Prox S e r i a l So lve r ” ) ;

return sName ;

}
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// /// The f o l l o w i n g methods are r e q u i r e d f o r a l l p l u g i n s /////////

/// Re t r i e v e t h e eng ine v e r s i o n we ’ re go ing to e x p e c t

extern ”C” PROX SERIAL PLUGIN API int getEngineVers ion ( ) {
return DvcEngineVersion ;

}

/// T e l l s us to r e g i s t e r our f u n c t i o n a l i t y to an eng ine k e r n e l

extern ”C” PROX SERIAL PLUGIN API void r e g i s t e rP l u g i n ( DvcKernel &K, const std : : s t r i n g &

pluginName ) {

Prox Se r i a l ∗ptr = new Prox Se r i a l ( ) ;

ptr−>SetPluginName ( pluginName ) ;

K. getCP SolverServer ( ) . AddCP Solver ( ptr ) ;

}

B.2.3 ProxCUDA

B.2.3.1 proxCUDAInterface.h

#pragma once

// Da t a s t r u c t u r e s ( p ro t o t y p e s , f u l l y d e f i n e d in proxCUDAKernels . cuh )

#define SINGLE MODE

//#d e f i n e DOUBLE MODE

#ifde f SINGLE MODE

typedef f loat FULL;

//#d e f i n e ALIGNMENT SIZE 16

#else

typedef double FULL;

#endif

// S t r u c t u r e s f o r each c o l l i s i o n po i n t

struct proxG t { // For Gn and Gf

//Arrays [ 4 ] f o r a l l i g nmen t

FULL G1 [ 4 ] ;

FULL G2 [ 4 ] ;

} ;

struct proxData t {
FULL r ;

FULL p ;

int b1index ;

int b2index ;

FULL gap ;

} ;

// S t r u c t u r e s f o r each body

struct proxNu t { // For nu and nu l p1

FULL nu [ 4 ] ;

} ;

struct proxBodyExternal t {
FULL pExt [ 4 ] ;

} ;

struct proxBodyConsts t {
FULL mass ;

FULL mInert ia ;

} ;

struct r e s u l t s t {
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int numIters ;

bool overva lue ;

int e r r o r ;

bool globalConverge ;

} ;

struct bodyPointers {
proxNu t ∗proxNu ;

proxNu t ∗proxNu lp1 ;

proxBodyExternal t ∗proxBodyExternal ;

proxBodyConsts t ∗proxBodyConsts ;

} ;

struct contac tPo in te r s {
proxG t ∗proxGn ;

proxG t ∗proxGf ;

proxData t ∗proxContactN ;

proxData t ∗proxContactF ;

bool ∗convergedN ;

bool ∗convergedF ;

} ;
// s t r u c t numbers t ;

extern ”C” void runTestCuda ( ) ;

extern ”C” bool InitCUDA(void ) ;

// d e l e t e mem found on d e v i c e (GPU)

extern ”C” bool deleteCUDAMem( bodyPointers ∗proxBody d , contac tPo in te r s ∗proxContact d ) ;

// De l e t e memory found on ho s t (CPU)

extern ”C” bool deleteHostMem ( bodyPointers ∗proxBody h , contac tPo in te r s ∗proxContact h ) ;

// d e l e t e r e s u l t s t r u c t

extern ”C” bool de l e t eRe su l t ( r e s u l t s t ∗&re su l t s h , r e s u l t s t ∗&r e s u l t s d ) ;

// a l l o c a t e s t r u s t s f o r b a s i c comm wi th k e r n e l

extern ”C” bool a l l o c a t eRe su l t ( r e s u l t s t ∗&re su l t s h , r e s u l t s t ∗&r e s u l t s d ) ;

// A l l o c a t e memory r e l e v a n t to b o d i e s ( ho s t and d e v i c e )

extern ”C” bool allocateBodiesMem ( int maxBodies ,

bodyPointers ∗proxBody h ,

bodyPointers ∗proxBody d

) ;

// A l l o c a t e memory r e l e v a n t to c on t a c t s ( ho s t and d e v i c e )

extern ”C” bool allocateContactsMem ( int maxContacts ,

contac tPo in te r s ∗proxContact h ,

contac tPo in te r s ∗proxContact d

) ;

// f o r popu l a t eProxDa taS t ruc tu r e :

// Copy popu l a t e d body s t r u c t s to d e v i c e

extern ”C” bool populateProxBodiesCUDA ( int numConstrainedBodies ,

bodyPointers ∗proxBody h ,

bodyPointers ∗proxBody d

) ;

// Copy popu l a t e d c on t a c t s t r u c t s to d e v i c e

extern ”C” bool populateProxContactsCUDA ( int numContacts ,

FULL co e f f F r i c t i o n ,

contac tPo in te r s ∗proxContact h ,

contac tPo in te r s ∗proxContact d

) ;

// f o r s o l v eProx :
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// do a l l s o l v i n g in nvcc ( b e t t e r c o n t r o l over GPU)

extern ”C” bool solveLCPProx ( int solveMode ,

FULL re laxCoe f f ,

FULL co e f f F r i c t i o n ,

int maxIters ,

int numContacts ,

int numConstrainedBodies ,

contac tPo in te r s ∗proxContact d ,

contac tPo in te r s ∗proxContact h ,

bodyPointers ∗proxBody d ,

bodyPointers ∗proxBody h ,

r e s u l t s t ∗ r e s u l t s h ,

r e s u l t s t ∗ r e s u l t s d

) ;

B.2.3.2 proxCUDAInterface.cu

#include ”proxCUDAInterface . h”

#include ”proxCUDAKernels . cuh”

//###

#include <s t d i o . h>

extern ”C” bool deleteCUDAMem( bodyPointers ∗proxBody d , contac tPo in te r s ∗proxContact d ){
cudaFree ( proxBody d−>proxNu ) ;

cudaFree ( proxBody d−>proxNu lp1 ) ;

cudaFree ( proxBody d−>proxBodyExternal ) ;

cudaFree ( proxBody d−>proxBodyConsts ) ;

cudaFree ( proxContact d−>convergedF ) ;

cudaFree ( proxContact d−>convergedN ) ;

cudaFree ( proxContact d−>proxContactF ) ;

cudaFree ( proxContact d−>proxContactN ) ;

cudaFree ( proxContact d−>proxGf ) ;

cudaFree ( proxContact d−>proxGn) ;

return true ;

}

extern ”C” bool deleteHostMem ( bodyPointers ∗proxBody h , contac tPo in te r s ∗proxContact h ){
cudaFreeHost ( proxBody h−>proxNu ) ;

cudaFreeHost ( proxBody h−>proxNu lp1 ) ;

cudaFreeHost ( proxBody h−>proxBodyExternal ) ;

cudaFreeHost ( proxBody h−>proxBodyConsts ) ;

cudaFreeHost ( proxContact h−>convergedF ) ;

cudaFreeHost ( proxContact h−>convergedN ) ;

cudaFreeHost ( proxContact h−>proxContactF ) ;

cudaFreeHost ( proxContact h−>proxContactN ) ;

cudaFreeHost ( proxContact h−>proxGf ) ;

cudaFreeHost ( proxContact h−>proxGn) ;

return true ;

}

extern ”C” bool de l e t eRe su l t ( r e s u l t s t ∗&re su l t s h , r e s u l t s t ∗&r e s u l t s d ){
cudaFreeHost ( r e s u l t s h ) ;

cudaFree ( r e s u l t s d ) ;

return true ;

}

extern ”C” bool a l l o c a t eRe su l t ( r e s u l t s t ∗&re su l t s h , r e s u l t s t ∗&r e s u l t s d ){
cudaHostAlloc(& r e su l t s h , s izeof ( r e s u l t s t ) , cudaHostAl locDefault ) ;

cudaMalloc(& r e su l t s d , s izeof ( r e s u l t s t ) ) ;

return true ;

}
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extern ”C” bool allocateBodiesMem ( int maxBodies ,

bodyPointers ∗proxBody h ,

bodyPointers ∗proxBody d

)

{
// ho s t (WC when proper )

cudaHostAlloc(&proxBody h−>proxNu , s izeof ( proxNu t )∗maxBodies , cudaHostAllocWriteCombined ) ;

cudaHostAlloc(&proxBody h−>proxNu lp1 , s izeof ( proxNu t )∗maxBodies , cudaHostAl locDefault ) ; //

read from l a t e r

cudaHostAlloc(&proxBody h−>proxBodyExternal , s izeof ( proxBodyExternal t )∗maxBodies ,

cudaHostAllocWriteCombined ) ;

cudaHostAlloc(&proxBody h−>proxBodyConsts , s izeof ( proxBodyConsts t )∗maxBodies ,

cudaHostAllocWriteCombined ) ;

// d e v i c e

cudaMalloc(&proxBody d−>proxNu , s izeof ( proxNu t )∗maxBodies ) ;

cudaMalloc(&proxBody d−>proxNu lp1 , s izeof ( proxNu t )∗maxBodies ) ;

cudaMalloc(&proxBody d−>proxBodyExternal , s izeof ( proxBodyExternal t )∗maxBodies ) ;

cudaMalloc(&proxBody d−>proxBodyConsts , s izeof ( proxBodyConsts t )∗maxBodies ) ;

p r i n t f ( ” bod ies a l l o c a t e d ! ! ! \ n” ) ;

return true ;

}

extern ”C” bool allocateContactsMem ( int maxContacts ,

contac tPo in te r s ∗proxContact h ,

contac tPo in te r s ∗proxContact d

)

{
// ho s t (WC when proper )

cudaHostAlloc(&proxContact h−>convergedF , s izeof (bool )∗maxContacts , 0 ) ;

cudaHostAlloc(&proxContact h−>convergedN , s izeof (bool )∗maxContacts , 0 ) ;

cudaHostAlloc(&proxContact h−>proxContactF , s izeof ( proxData t )∗maxContacts ,

cudaHostAllocWriteCombined ) ;

cudaHostAlloc(&proxContact h−>proxContactN , s izeof ( proxData t )∗maxContacts ,

cudaHostAllocWriteCombined ) ;

cudaHostAlloc(&proxContact h−>proxGf , s izeof ( proxG t )∗maxContacts , cudaHostAllocWriteCombined ) ;

cudaHostAlloc(&proxContact h−>proxGn , s izeof ( proxG t )∗maxContacts , cudaHostAllocWriteCombined ) ;

// d e v i c e

cudaMalloc(&proxContact d−>convergedF , s izeof (bool )∗maxContacts ) ;

cudaMalloc(&proxContact d−>convergedN , s izeof (bool )∗maxContacts ) ;

cudaMalloc(&proxContact d−>proxContactF , s izeof ( proxData t )∗maxContacts ) ;

cudaMalloc(&proxContact d−>proxContactN , s izeof ( proxData t )∗maxContacts ) ;

cudaMalloc(&proxContact d−>proxGf , s izeof ( proxG t )∗maxContacts ) ;

cudaMalloc(&proxContact d−>proxGn , s izeof ( proxG t )∗maxContacts ) ;

p r i n t f ( ” contac t s a l l o c a t ed ! ! ! \ n” ) ;

return true ;

}

// Copy popu l a t e d body s t r u c t s to d e v i c e

extern ”C” bool populateProxBodiesCUDA ( int numConstrainedBodies ,

bodyPointers ∗proxBody h ,

bodyPointers ∗proxBody d

)

{
cudaMemcpyAsync ( proxBody d−>proxBodyConsts , proxBody h−>proxBodyConsts , s izeof ( proxBodyConsts t )

∗numConstrainedBodies , cudaMemcpyHostToDevice ) ;

cudaMemcpyAsync ( proxBody d−>proxBodyExternal , proxBody h−>proxBodyExternal , s izeof (

proxBodyExternal t )∗numConstrainedBodies , cudaMemcpyHostToDevice ) ;

cudaMemcpyAsync ( proxBody d−>proxNu , proxBody h−>proxNu , s izeof ( proxNu t )∗numConstrainedBodies ,

cudaMemcpyHostToDevice ) ;

// nu l p1 con t a i n s no v a l i d data , no need to copy

return true ;

}
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// Copy popu l a t e d c on t a c t s t r u c t s to d e v i c e

extern ”C” bool populateProxContactsCUDA ( int numContacts ,

FULL co e f f F r i c t i o n ,

contac tPo in te r s ∗proxContact h ,

contac tPo in te r s ∗proxContact d

)

{
// convergedN has no u s e f u l da ta

// convergedF has no u s e f u l da ta

i f ( c o e f f F r i c t i o n != 0 . 0 ) { // on l y copy f r i c t i o n e l emen t s i f t h e r e i s f r i c t i o n

cudaMemcpyAsync ( proxContact d−>proxContactF , proxContact h−>proxContactF , s izeof ( proxData t )∗
numContacts , cudaMemcpyHostToDevice ) ;

cudaMemcpyAsync ( proxContact d−>proxGf , proxContact h−>proxGf , s izeof ( proxG t )∗numContacts ,

cudaMemcpyHostToDevice ) ;

}
cudaMemcpyAsync ( proxContact d−>proxContactN , proxContact h−>proxContactN , s izeof ( proxData t )∗

numContacts , cudaMemcpyHostToDevice ) ;

cudaMemcpyAsync ( proxContact d−>proxGn , proxContact h−>proxGn , s izeof ( proxG t )∗numContacts ,

cudaMemcpyHostToDevice ) ;

return true ;

}

B.2.3.3 proxCUDA.h

/∗∗ @ f i l e p l u g i n s / p r o xSo l v e r

∗
∗ This f i l e c on t a i n s

∗ @author : Jeremy Betz

∗ @ingroup : p r o xSo l v e r

∗/

#ifndef PROX CUDA PLUGIN H

#define PROX CUDA PLUGIN H

#include <s t r ing>

#include ”DvcKernel . h”

#include ”proxCUDAInterface . h”

#ifde f WIN32

#ifde f PROX CUDA PLUGIN EXPORTS

#de f i n e PROX CUDA PLUGIN API d e c l s p e c ( d l l e xpo r t )

#else

#de f i n e PROX CUDA PLUGIN API d e c l s p e c ( d l l impor t )

#endif

// Linux

#else

#de f i n e PROX CUDA PLUGIN API

#endif

using namespace DVC;

/∗∗
∗ c l a s s Prox CUDA

∗ @ingroup : Prox CUDA

∗/
class Prox CUDA : public Prox Solver {
public :

Prox CUDA() ;

virtual ˜Prox CUDA() ;

const std : : s t r i n g &getName ( ) const ; // ( Shou ld f i g u r e out a way to check i f a p l u g i n i s prox

based us ing name)

virtual void r e f r e s h ( const DVC: : PrefMap& pr e f s ) ; // Data s t r u c t u r e s b u i l t here ( so t h ey don ’ t

need to be r e b u i l t e v e ry t ime s t e p )
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// FROM Prox So l v e r

bool populateProxDataStructure ( const std : : l i s t <DynamicalBody ∗> ∗m dynamicalBodies ,

const std : : l i s t <DvcCol l i s ionResu l tPtr> ∗m co l l i s i o n s ,

s i z e t m numConstrainedBodies , s i z e t m numContacts ) ;

bool so lveProx ( ) ; // I n t e r f a c e from Prox So l v e r

bool getProxBodyNu ( int index , DVC: : Vector<REAL> ∗nu) ;

private :

// f o r popu l a t eProxDa taS t ruc tu r e :

virtual void i n i tProxBod ie s ( const std : : l i s t <DynamicalBody ∗> ∗m dynamicalBodies ) ;

virtual void formNormalProx ( const std : : l i s t <DvcCol l i s ionResu l tPtr> ∗m co l l i s i o n s ) ;

virtual void formFrict ionProx ( const std : : l i s t <DvcCol l i s ionResu l tPtr> ∗m co l l i s i o n s ) ;

bodyPointers proxBody h ;

bodyPointers proxBody d ;

contac tPo in te r s proxContact h ;

contac tPo in te r s proxContact d ;

r e s u l t s t ∗ r e s u l t s h ;

r e s u l t s t ∗ r e s u l t s d ;

// Values from se tup ( r e f r e s h f un c t i o n / prefmap )

int maxBodies ;

int maxContacts ;

int solveMode ;

double r e l axCoe f f ; // a l s o known as omega

int debug ;

int maxIters ;

} ;

#endif // PROX CUDA PLUGIN H

B.2.3.4 proxCUDA.cpp

/∗∗ @defgroup ∗∗∗ s o l v e r p l u g i n

∗ @ingroup c p s o l v e r

∗ Group ∗∗∗ i s a subgroup o f c p s o l v e r

∗/

/∗∗ @ f i l e p l u g i n s / . cpp

∗ The ∗∗∗ s o l v e r p l u g i n

∗ This f i l e c on t a i n s t h e ∗∗∗ s o l v e r p l u g i n imp lementa t ion

∗ @author : Jeremy Betz

∗ @ingroup :

∗/

#include ”proxCUDA. h”

#include <s t r ing>

#include <fstream>

#include <iostream>

#include <ForceCont ro l l e r . h>

/∗∗
∗ De f au l t c o n s t r u c t o r

∗/
Prox CUDA : : Prox CUDA()

{
// Se t v a l u e s to d e f a u l t s t h a t w i l l cause p r e d i c t a b l e b r e a k i n g i f not g i v en proper v a l u e s ( in

r e f r e s h ( ) )

maxBodies = 0 ;
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maxContacts = 0 ;

solveMode = 0 ;

r e l axCoe f f = 0 ;

debug = 0 ;

//Host memory

proxBody h . proxNu = NULL;

proxBody h . proxNu lp1 = NULL;

proxBody h . proxBodyConsts = NULL;

proxBody h . proxBodyExternal = NULL;

proxContact h . convergedF = NULL;

proxContact h . convergedN = NULL;

proxContact h . proxContactF = NULL;

proxContact h . proxContactN = NULL;

proxContact h . proxGf = NULL;

proxContact h . proxGn = NULL;

r e s u l t s h = NULL;

// Device memory

proxBody d . proxNu = NULL;

proxBody d . proxNu lp1 = NULL;

proxBody d . proxBodyConsts = NULL;

proxBody d . proxBodyExternal = NULL;

proxContact d . convergedF = NULL;

proxContact d . convergedN = NULL;

proxContact d . proxContactF = NULL;

proxContact d . proxContactN = NULL;

proxContact d . proxGf = NULL;

proxContact d . proxGn = NULL;

r e s u l t s d = NULL;

}

Prox CUDA : : ˜ Prox CUDA()

{
// De l e t e ho s t memory a l l o c a t e d by cuda ( pinned memory )

deleteHostMem(&proxBody h ,&proxContact h ) ;

// Let cuda code d e l e t e a l l a l l o c a t e d cuda v a r i a b l e s

deleteCUDAMem(&proxBody d ,&proxContact d ) ;

// d e l e t e r e s u l t s t r u c t

de l e t eRe su l t ( r e s u l t s h , r e s u l t s d ) ;

}

void Prox CUDA : : r e f r e s h ( const PrefMap & pr e f s ) {

InitCUDA () ;

// a l l o c a t e s t r u c t f o r k e r n e l comm

i f ( r e s u l t s h == NULL){
a l l o c a t eRe su l t ( r e s u l t s h , r e s u l t s d ) ;

}

// p r i n t f (” debug qq %d\n” , s i z e o f ( normalProx t ) ) ;

std : : s t r i n g pluginPath = GetPluginPrefPath ( ) ;

maxBodies = p r e f s . g e t i n t ( pluginPath + ”/maxBodies” ) ;

i f (maxBodies < 1){ maxBodies = 10 ; p r i n t f ( ” Inva l i d number o f maxBodies , s e t t i n g to 1 0 . . . \ n” )

;}
i f ( proxBody h . proxNu == NULL) // i f v a l u e i s not nu l l , assume a l r e ad y a l l o c a t e d ( shou l d a l l ow

a d j u s t i n g s i z e )

allocateBodiesMem (maxBodies ,&proxBody h ,&proxBody d ) ;

maxContacts = p r e f s . g e t i n t ( pluginPath + ”/maxContacts” ) ;

i f (maxContacts < 1){ maxContacts = 100 ; p r i n t f ( ” Inva l i d number o f maxContacts , s e t t i n g to

1 0 0 . . . \ n” ) ;}
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i f ( proxContact h . proxContactN == NULL) // i f v a l u e i s not nu l l , assume a l r e ad y a l l o c a t e d (

shou l d a l l ow a d j u s t i n g s i z e )

allocateContactsMem (maxContacts ,&proxContact h ,&proxContact d ) ;

// shou l d be changed to use enum

std : : s t r i n g s o l v eS t r = p r e f s . g e t s t r i n g ( pluginPath + ”/solveMode” ) ;

i f ( s o l v eS t r == ” r i chardson ” )

solveMode = 1 ;

else i f ( s o l v eS t r == ” ja cob i ” )

solveMode = 2 ;

else i f ( s o l v eS t r == ” g au s s s e i d e l ” )

solveMode = 3 ;

else {
solveMode = 1 ;

p r i n t f ( ” Inva l i d solveMode , us ing r i chardson . . . \ n” ) ;

}

maxIters = p r e f s . g e t i n t ( pluginPath + ”/maxIters ” ) ;

i f ( maxIters < 1){ maxIters = 500 ; p r i n t f ( ” Inva l i d number o f maxIters , s e t t i n g to 5 0 0 . . . \ n” ) ;}

debug = p r e f s . g e t i n t ( pluginPath + ”/debug” ) ;

r e l axCoe f f = p r e f s . ge t doub le ( pluginPath + ”/ r e l axCoe f f ” ) ; // a l s o known as omega

i f ( r e l axCoe f f == 0) { p r i n t f ( ” Inva l i d re l axCoe f f , s e t t i n g to 1 . . . \ n” ) ; r e l axCoe f f = 1 ; } //

r e l a xCo e f f can ’ t be 0 , so s e t to a d e f a u l t o f 1

}

bool Prox CUDA : : populateProxDataStructure ( const std : : l i s t < DynamicalBody∗ >∗ m dynamicalBodies ,

const std : : l i s t < DvcCol l i s i onResu l tPtr >∗ m co l l i s i o n s ,

s i z e t m numConstrainedBodies , s i z e t m numContacts )

{
numConstrainedBodies = m numConstrainedBodies ;

numContacts = m numContacts ;

// Popu la t e t h e d a t a s t r u c t u r e f o r t h e c on t a c t s

i n i tProxBod ie s ( m dynamicalBodies ) ;

// Copy d a t a s t r u c t u r e to d e v i c e

populateProxBodiesCUDA ( numConstrainedBodies ,&proxBody h ,&proxBody d ) ;

// Popu la t e t h e d a t a s t r u c t u r e f o r t h e b o d i e s

formNormalProx ( m c o l l i s i o n s ) ;

i f ( c o e f f F r i c t i o n != 0 . 0 ) { // i f t h e r e i s f r i c t i o n , form d a t a s t r u c t u r e f o r f r i c t i o n c on t a c t s

formFrict ionProx ( m c o l l i s i o n s ) ;

}
// Copy d a t a s t r u c t u r e to d e v i c e

populateProxContactsCUDA (numContacts , c o e f f F r i c t i o n ,&proxContact h ,&proxContact d ) ;

return true ;

}

void Prox CUDA : : in i tProxBod ie s ( const std : : l i s t < DynamicalBody∗ >∗ m dynamicalBodies )

{
DVC: : Vector<REAL> newForce (3 ) ;

DVC: : Vector<REAL> newForceSum (3) ;

std : : l i s t <DynamicalBody ∗>:: c o n s t i t e r a t o r bodyItr = m dynamicalBodies−>begin ( ) ;

for ( ; bodyItr != m dynamicalBodies−>end ( ) ; ++bodyItr )

{
DynamicalBody ∗b = ∗bodyItr ;

i f ( ! ( b−>I sConst ra ined ( ) ) ) // Body in f r e e f a l l

{ // f r e e f a l l body , not f o rmu l a t ed in ST LCP

continue ;

}

newForceSum . c l e a r ( ) ;

unsigned int rowIndex = b−>GetWrenchRowIndex ( ) /3 ;

// I n i t d e f a u l t v a l u e s
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proxBody h . proxBodyExternal [ rowIndex ] . pExt [ 0 ] = 0 ;

proxBody h . proxBodyExternal [ rowIndex ] . pExt [ 1 ] = 0 ;

proxBody h . proxBodyExternal [ rowIndex ] . pExt [ 2 ] = 0 ;

i f (b−>I sForceCont ro l l ed ( ) )

{ // sum up the c o n t r i b u t i n g f o r c e s from each f o r c e c o n t r o l l e r

const std : : l i s t <const ForceCont ro l l e r ∗>& fo r c eC t r l s = b−>GetForceContro l l e r s ( ) ;

std : : l i s t <const ForceCont ro l l e r ∗>:: c o n s t i t e r a t o r i t r = f o r c eC t r l s . begin ( ) ;

for ( ; i t r != f o r c eC t r l s . end ( ) ; ++i t r ){
newForce . c l e a r ( ) ;

(∗ i t r )−>GetForce ( simTime , newForce , b−>GetQ( ) , b−>GetNu ( ) ) ;

newForceSum += newForce ;

}
// add the impu l s e s from the c o n t r o l l e r s

proxBody h . proxBodyExternal [ rowIndex ] . pExt [ 0 ] = s t epS i z e ∗newForceSum [ 0 ] ;

proxBody h . proxBodyExternal [ rowIndex ] . pExt [ 1 ] = s t epS i z e ∗newForceSum [ 1 ] ;

proxBody h . proxBodyExternal [ rowIndex ] . pExt [ 2 ] = s t epS i z e ∗newForceSum [ 2 ] ;

}

// add the g r a v i t a t i o n a l f o r c e

proxBody h . proxBodyExternal [ rowIndex ] . pExt [ 1 ] −= grav i ty ∗ s t epS i z e ∗ b−>GetMass ( ) ;

// Get o t h e r i n f o f o r prox s o l v e r

proxBody h . proxBodyConsts [ rowIndex ] . mass = b−>GetMass ( ) ;

proxBody h . proxBodyConsts [ rowIndex ] . mInert ia = b−>GetMomentInertia ( ) ;

proxBody h . proxNu [ rowIndex ] . nu [ 0 ] = b−>GetNu ( ) (0) ;

proxBody h . proxNu [ rowIndex ] . nu [ 1 ] = b−>GetNu ( ) (1) ;

proxBody h . proxNu [ rowIndex ] . nu [ 2 ] = b−>GetNu ( ) (2) ;

}
}

void Prox CUDA : : formNormalProx ( const std : : l i s t < DvcCol l i s i onResu l tPtr >∗ m co l l i s i o n s )

{
int i = 0 ;

DVC: : Vector<REAL> n (2) , r (2 ) , Gn vec (3) ;

std : : l i s t <DvcCol l i s ionResu l tPtr > : : c o n s t i t e r a t o r c on t a c t I t r ;

for ( c on t a c t I t r = m co l l i s i o n s−>begin ( ) ; c on t a c t I t r != m co l l i s i o n s−>end ( ) ; ++con t a c t I t r )

{
const DvcCol l i s i onResu l tPtr &colRes = ∗ c on t a c t I t r ;

// Get t h e two b od i e s in c on t a c t .

Body ∗ m1 = colRes−>b1 ;

Body ∗ m2 = colRes−>b2 ;

// San i t y Check : Shou ld never be c o l l i s i o n che c k in g between 2 s t a t i c o b j e c t s

a s s e r t ( ! ( m1−>GetBodyType ( )==BODY OBSTACLE && m2−>GetBodyType ( )==BODY OBSTACLE ) ) ;

// Get t h e normal and t a n g e n t i a l i n f o rma t i on

n (0) = colRes−>normalB1toB2 [ 0 ] ;

n (1) = colRes−>normalB1toB2 [ 1 ] ;

// I n i t p n to 0

proxContact h . proxContactN [ i ] . p = 0 ;

// Get each body ’ s row l o c a t i o n in t he wrench and each body ’ s p o s i t i o n

i f ( m1−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e

//M1RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M1Pos = static cast< const DynamicalBody ∗ > ( m1 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M1Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetNu ( ) ;

r (0 ) = colRes−>b1ContactLoc [ 0 ] − M1Pos [ 0 ] ;

r (1 ) = colRes−>b1ContactLoc [ 1 ] − M1Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

proxContact h . proxGn [ i ] . G1 [ 0 ] = n (0) ;

proxContact h . proxGn [ i ] . G1 [ 1 ] = n (1) ;

proxContact h . proxGn [ i ] . G1 [ 2 ] = r . cross2D (n) ;
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proxContact h . proxContactN [ i ] . gap = colRes−>d i s tance ;

proxContact h . proxContactN [ i ] . b1index = static cast< const DynamicalBody ∗ > ( m1 )−>
GetWrenchRowIndex ( ) /3 ;

}
else proxContact h . proxContactN [ i ] . b1index = −1;

i f ( m2−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e

//M2RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M2Pos = static cast< const DynamicalBody ∗ > ( m2 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M2Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetNu ( ) ;

r (0 ) = colRes−>b2ContactLoc [ 0 ] − M2Pos [ 0 ] ;

r (1 ) = colRes−>b2ContactLoc [ 1 ] − M2Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

n (0) = −n (0) ;

n (1) = −n (1) ;

proxContact h . proxGn [ i ] . G2 [ 0 ] = n (0) ;

proxContact h . proxGn [ i ] . G2 [ 1 ] = n (1) ;

proxContact h . proxGn [ i ] . G2 [ 2 ] = r . cross2D (n) ;

proxContact h . proxContactN [ i ] . gap = colRes−>d i s tance ;

proxContact h . proxContactN [ i ] . b2index = static cast< const DynamicalBody ∗ > ( m2 )−>
GetWrenchRowIndex ( ) /3 ;

}
else proxContact h . proxContactN [ i ] . b2index = −1;

//++ co l I n d e x ; // Next column

i++; // Po s i t i o n in array

}
return ;

}

void Prox CUDA : : formFrict ionProx ( const std : : l i s t < DvcCol l i s i onResu l tPtr >∗ m co l l i s i o n s )

{
int i = 0 ;

DVC: : Vector<REAL> n (2) , r (2 ) , Gf vec (3) ;

std : : l i s t <DvcCol l i s ionResu l tPtr > : : c o n s t i t e r a t o r c on t a c t I t r ;

for ( c on t a c t I t r = m co l l i s i o n s−>begin ( ) ; c on t a c t I t r != m co l l i s i o n s−>end ( ) ; ++con t a c t I t r )

{
const DvcCol l i s i onResu l tPtr &colRes = ∗ c on t a c t I t r ;

// Get t h e two b od i e s in c on t a c t .

Body ∗ m1 = colRes−>b1 ;

Body ∗ m2 = colRes−>b2 ;

// San i t y Check : Shou ld never be c o l l i s i o n che c k in g between 2 s t a t i c o b j e c t s

a s s e r t ( ! ( m1−>GetBodyType ( )==BODY OBSTACLE && m2−>GetBodyType ( )==BODY OBSTACLE ) ) ;

// Get t h e normal and t a n g e n t i a l i n f o rma t i on

// ( x ’ = y ; y ’ = −x )

n (0) = colRes−>normalB1toB2 [ 1 ] ;

n (1) = −(colRes−>normalB1toB2 [ 0 ] ) ;

proxContact h . proxContactF [ i ] . p = 0 ;

// Get each body ’ s row l o c a t i o n in t he wrench and each body ’ s p o s i t i o n

i f ( m1−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e

//M1RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M1Pos = static cast< const DynamicalBody ∗ > ( m1 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M1Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m1 )−>GetNu ( ) ;
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r (0 ) = colRes−>b1ContactLoc [ 0 ] − M1Pos [ 0 ] ;

r (1 ) = colRes−>b1ContactLoc [ 1 ] − M1Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

proxContact h . proxGf [ i ] . G1 [ 0 ] = n (0) ;

proxContact h . proxGf [ i ] . G1 [ 1 ] = n (1) ;

proxContact h . proxGf [ i ] . G1 [ 2 ] = r . cross2D (n) ;

proxContact h . proxContactF [ i ] . b1index = static cast< const DynamicalBody ∗ > ( m1 )−>
GetWrenchRowIndex ( ) /3 ;

}
else proxContact h . proxContactF [ i ] . b1index = −1;

i f ( m2−>GetBodyType ( )==BODYDYNAMICAL )

{ // Only in t h e wrench i f i t i s not an o b s t a c l e

//M2RowIndex = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetWrenchRowIndex ( ) ;

const DVC: : Vector<REAL> &M2Pos = static cast< const DynamicalBody ∗ > ( m2 )−>GetQ( ) ;

// cons t DVC: : Vector<REAL> &M2Nu = s t a t i c c a s t < cons t DynamicalBody ∗ > ( m2 )−>GetNu ( ) ;

r (0 ) = colRes−>b2ContactLoc [ 0 ] − M2Pos [ 0 ] ;

r (1 ) = colRes−>b2ContactLoc [ 1 ] − M2Pos [ 1 ] ;

a s s e r t ( r (0 ) == r (0) && r (1) == r (1) ) ;

n (0) = −n (0) ;

n (1) = −n (1) ;

proxContact h . proxGf [ i ] . G2 [ 0 ] = n (0) ;

proxContact h . proxGf [ i ] . G2 [ 1 ] = n (1) ;

proxContact h . proxGf [ i ] . G2 [ 2 ] = r . cross2D (n) ;

proxContact h . proxContactF [ i ] . b2index = static cast< const DynamicalBody ∗ > ( m2 )−>
GetWrenchRowIndex ( ) /3 ;

}
else proxContact h . proxContactF [ i ] . b2index = −1;

//++ co l I n d e x ; // Next column

i++; // Po s i t i o n in array

}
return ;

}

bool Prox CUDA : : so lveProx ( )

{
solveLCPProx ( solveMode , r e l axCoe f f , c o e f f F r i c t i o n , maxIters , numContacts , numConstrainedBodies ,&

proxContact d ,&proxContact h ,&proxBody d ,&proxBody h , r e s u l t s h , r e s u l t s d ) ;

return true ;

}

bool Prox CUDA : : getProxBodyNu ( int index , DVC: : Vector<REAL> ∗nu)

{
(∗nu) [ 0 ] = (REAL) proxBody h . proxNu lp1 [ index ] . nu [ 0 ] ;

(∗nu) [ 1 ] = (REAL) proxBody h . proxNu lp1 [ index ] . nu [ 1 ] ;

(∗nu) [ 2 ] = (REAL) proxBody h . proxNu lp1 [ index ] . nu [ 2 ] ;

return true ;

}

const std : : s t r i n g & Prox CUDA : : getName ( ) const {
stat ic std : : s t r i n g sName( ”Prox CUDA Solver ” ) ;

return sName ;

}

// /// The f o l l o w i n g methods are r e q u i r e d f o r a l l p l u g i n s /////////

/// Re t r i e v e t h e eng ine v e r s i o n we ’ re go ing to e x p e c t

extern ”C” PROX CUDA PLUGIN API int getEngineVers ion ( ) {
return DvcEngineVersion ;

}
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/// T e l l s us to r e g i s t e r our f u n c t i o n a l i t y to an eng ine k e r n e l

extern ”C” PROX CUDA PLUGIN API void r e g i s t e rP l u g i n ( DvcKernel &K, const std : : s t r i n g & pluginName

) {

Prox CUDA ∗ptr = new Prox CUDA() ;

ptr−>SetPluginName ( pluginName ) ;

K. getCP SolverServer ( ) . AddCP Solver ( ptr ) ;

}

B.2.3.5 proxCUDAKernels.cuh

#pragma once

// Se t CUDA ke r n e l t o use doub l e or s i n g l e p r e c i s i o n

#include ”proxCUDAInterface . h”

// i f d e f ined , then launch k e r n e l s a l l from host , i f not de f ined , then w i l l use k e r n e l based

s o l v e r

#define DEBUG KERNEL HOST

bool ca l cu la teR ( int solveMode , FULL re laxCoe f f , bool f r i c t i o n , int numContacts , contac tPo in te r s

∗proxContact d , bodyPointers ∗proxBody d , cudaStream t ∗ stream ) ;

// f o r c a l c u l a t eR :

#ifde f DEBUG KERNEL HOST

g l o b a l void ca l cu la t eR ichardson (FULL re laxCoe f f , bool f r i c t i o n , int numContacts ,

contac tPo in te r s proxContact d ) ;

#else

d e v i c e void ca l cu la t eR ichardson (FULL re laxCoe f f , bool f r i c t i o n , int numContacts ,

contac tPo in te r s proxContact d ) ;

#endif

#i fde f DEBUG KERNEL HOST

g l o b a l void c a l c u l a t e J a c ob i (FULL re laxCoe f f , bool f r i c t i o n , int numContacts , contac tPo in te r s

proxContact d , bodyPointers proxBody d ) ;

#else

d e v i c e void c a l c u l a t e J a c ob i (FULL re laxCoe f f , bool f r i c t i o n , int numContacts , contac tPo in te r s

proxContact d , bodyPointers proxBody d ) ;

#endif

// f o r checkConverge :

bool checkConverge ( int numContacts , bool f r i c t i o n , contac tPo in te r s ∗proxContact h ) ;

#ifndef DEBUG KERNEL HOST

g l o b a l void solveLCPProxKernel ( int solveMode , int maxIters , int numContacts , int

numConstrainedBodies , bool f r i c t i o n , FULL co e f f F r i c t i o n , FULL re laxCoe f f , contac tPo in te r s

proxContact d , bodyPointers proxBody d , r e s u l t s t ∗ r e s u l t s d ) ;

#endif

// f o r updateBodyNu :

#ifde f DEBUG KERNEL HOST

g l o b a l void updateBodyNu (bool f r i c t i o n , int numContacts , int numConstrainedBodies ,

contac tPo in te r s proxContact d , bodyPointers proxBody d ) ;

#else

d e v i c e void updateBodyNu (bool f r i c t i o n , int numContacts , int numConstrainedBodies ,

contac tPo in te r s proxContact d , bodyPointers proxBody d ) ;

#endif

// f o r solveLCPProx

#ifde f DEBUG KERNEL HOST

g l o b a l void solveLCPProxNormal ( int numContacts , contac tPo in te r s proxContact d , bodyPointers

proxBody d ) ;

#else
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d e v i c e void solveLCPProxNormal ( int numContacts , contac tPo in te r s proxContact d , bodyPointers

proxBody d ) ;

#endif

#i fde f DEBUG KERNEL HOST

g l o b a l void solveLCPProxFrict ion ( int numContacts , FULL co e f f F r i c t i o n , contac tPo in te r s

proxContact d , bodyPointers proxBody d ) ;

#else

d e v i c e void solveLCPProxFrict ion ( int numContacts , FULL co e f f F r i c t i o n , contac tPo in te r s

proxContact d , bodyPointers proxBody d ) ;

#endif

B.2.3.6 proxCUDAKernels.cu

#include ”proxCUDAKernels . cuh”

#include <s t d i o . h>

#include <s t d l i b . h>

#include <cuda . h>

#include ” cuPr in t f . cu”

#include <math . h>

//#d e f i n e PRINT KERNEL ERRORS

#define convergeNormal −1e−6
#define conve rgeFr i c t i on 1e−6

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ I n i t CUDA ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
#i f DEVICE EMULATION

bool InitCUDA(void ){return true ;}

#else

extern ”C” bool InitCUDA(void )

{
int count = 0 ;

int i = 0 ;

cudaGetDeviceCount(&count ) ;

i f ( count == 0) {
f p r i n t f ( s tder r , ”There i s no dev i ce .\n” ) ;

return fa l se ;

}

for ( i = 0 ; i < count ; i++) {
cudaDeviceProp prop ;

i f ( cudaGetDevicePropert ies (&prop , i ) == cudaSuccess ) {
i f ( prop . major >= 1) {

break ;

}
}

}
i f ( i == count ) {

f p r i n t f ( s tder r , ”There i s no dev i ce support ing CUDA.\n” ) ;

return fa l se ;

}
cudaSetDevice ( i ) ;

c udaPr i n t f I n i t ( ) ;

// p r i n t f (”FULL s i z e = %d\n” , ( i n t ) s i z e o f (FULL) ) ;

p r i n t f ( ”CUDA i n i t i a l i z e d .\n” ) ;

return true ;
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}

#endif

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ KERNELS ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// Threads are 0 indexed

d e v i c e int get Id ( ) {
//2D b l o c k rows , 2D th r ead b l o c k s

return ( gridDim . x∗blockIdx . y+blockIdx . x ) ∗( blockDim . x∗blockDim . y ) + ( blockDim . x∗ threadIdx . y ) +

threadIdx . x ;

}

// r e t u rn s i f a t h r ead i s an o v e r f l ow th r ead ( w i l l j u s t r e t u rn [ e x i t ] i f t r u e )

d e v i c e bool amIDead( int maxId ){
return ( get Id ( ) > maxId ) ; // maxId w i l l be numBlank−1

}

#ifde f DEBUG KERNEL HOST

g l o b a l void ca l cu la t eR ichardson (FULL re laxCoe f f , bool f r i c t i o n , int numContacts ,

contac tPo in te r s proxContact d ){
#else

d e v i c e void ca l cu la t eR ichardson (FULL re laxCoe f f , bool f r i c t i o n , int numContacts ,

contac tPo in te r s proxContact d ){
#endif

i f ( amIDead( numContacts−1) ) return ; // k i l l u s e l e s s t h r e ad s a t b e g i nn in g

proxContact d . proxContactN [ get Id ( ) ] . r = r e l axCoe f f ;

i f ( f r i c t i o n ){
proxContact d . proxContactF [ get Id ( ) ] . r = r e l axCoe f f ;

}
return ;

}

#ifde f DEBUG KERNEL HOST

g l o b a l void c a l c u l a t e J a c ob i (FULL re laxCoe f f , bool f r i c t i o n , int numContacts , contac tPo in te r s

proxContact d , bodyPointers proxBody d ){
#else

d e v i c e void c a l c u l a t e J a c ob i (FULL re laxCoe f f , bool f r i c t i o n , int numContacts , contac tPo in te r s

proxContact d , bodyPointers proxBody d ){
#endif

i f ( amIDead( numContacts−1) ) return ; // k i l l u s e l e s s t h r e ad s a t b e g i nn in g

FULL de l a s su s = 0 ;

int id = get Id ( ) ;

i f ( proxContact d . proxContactN [ id ] . b1index != −1){
de l a s su s += ( proxContact d . proxGn [ id ] . G1 [ 0 ] ∗ proxContact d . proxGn [ id ] . G1 [ 0 ] ) /proxBody d .

proxBodyConsts [ proxContact d . proxContactN [ id ] . b1index ] . mass +

( proxContact d . proxGn [ id ] . G1 [ 1 ] ∗ proxContact d . proxGn [ id ] . G1 [ 1 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b1index ] . mass +

( proxContact d . proxGn [ id ] . G1 [ 2 ] ∗ proxContact d . proxGn [ id ] . G1 [ 2 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b1index ] . mInert ia ;

}
i f ( proxContact d . proxContactN [ id ] . b2index != −1){

de l a s su s += ( proxContact d . proxGn [ id ] . G2 [ 0 ] ∗ proxContact d . proxGn [ id ] . G2 [ 0 ] ) /proxBody d .

proxBodyConsts [ proxContact d . proxContactN [ id ] . b2index ] . mass +

( proxContact d . proxGn [ id ] . G2 [ 1 ] ∗ proxContact d . proxGn [ id ] . G2 [ 1 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b2index ] . mass +

( proxContact d . proxGn [ id ] . G2 [ 2 ] ∗ proxContact d . proxGn [ id ] . G2 [ 2 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b2index ] . mInert ia ;

}
proxContact d . proxContactN [ get Id ( ) ] . r = r e l axCoe f f / de l a s su s ;

i f ( f r i c t i o n ){
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de l a s su s = 0 ;

i f ( proxContact d . proxContactN [ id ] . b1index != −1){ // NOTE proxContactN has a l r e a d y been

l o o k ed up ( so i s p r o b a b l y cached ) and w i l l have t h e same b1 and b2 index

de l a s su s += ( proxContact d . proxGf [ id ] . G1 [ 0 ] ∗ proxContact d . proxGf [ id ] . G1 [ 0 ] ) /proxBody d .

proxBodyConsts [ proxContact d . proxContactN [ id ] . b1index ] . mass +

( proxContact d . proxGf [ id ] . G1 [ 1 ] ∗ proxContact d . proxGf [ id ] . G1 [ 1 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b1index ] . mass +

( proxContact d . proxGf [ id ] . G1 [ 2 ] ∗ proxContact d . proxGf [ id ] . G1 [ 2 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b1index ] . mInert ia ;

}
i f ( proxContact d . proxContactN [ id ] . b2index != −1){

de l a s su s += ( proxContact d . proxGf [ id ] . G2 [ 0 ] ∗ proxContact d . proxGf [ id ] . G2 [ 0 ] ) /proxBody d .

proxBodyConsts [ proxContact d . proxContactN [ id ] . b2index ] . mass +

( proxContact d . proxGf [ id ] . G2 [ 1 ] ∗ proxContact d . proxGf [ id ] . G2 [ 1 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b2index ] . mass +

( proxContact d . proxGf [ id ] . G2 [ 2 ] ∗ proxContact d . proxGf [ id ] . G2 [ 2 ] ) /proxBody d . proxBodyConsts [

proxContact d . proxContactN [ id ] . b2index ] . mInert ia ;

}
proxContact d . proxContactF [ get Id ( ) ] . r = r e l axCoe f f / de l a s su s ;

}

return ;

}

#ifde f DEBUG KERNEL HOST

g l o b a l void updateBodyNu (bool f r i c t i o n , int numContacts , int numConstrainedBodies ,

contac tPo in te r s proxContact d , bodyPointers proxBody d ){
#else

d e v i c e void updateBodyNu (bool f r i c t i o n , int numContacts , int numConstrainedBodies ,

contac tPo in te r s proxContact d , bodyPointers proxBody d ){
#endif

int id = get Id ( ) ;

FULL localNu [ 3 ] ;

// cuPr i n t f (” I am th r ead %d !\n” , i d ) ;

i f ( amIDead( numConstrainedBodies−1) ) return ; // k i l l u s e l e s s t h r e ad s a t b e g i nn in g

localNu [ 0 ] = 0 ;

localNu [ 1 ] = 0 ;

localNu [ 2 ] = 0 ;

for ( int i = 0 ; i < numContacts ; i++){ // i f body1 i s me

i f ( proxContact d . proxContactN [ i ] . b1index == id ){
localNu [ 0 ] += proxContact d . proxGn [ i ] . G1 [ 0 ] ∗ proxContact d . proxContactN [ i ] . p ;

localNu [ 1 ] += proxContact d . proxGn [ i ] . G1 [ 1 ] ∗ proxContact d . proxContactN [ i ] . p ;

localNu [ 2 ] += proxContact d . proxGn [ i ] . G1 [ 2 ] ∗ proxContact d . proxContactN [ i ] . p ;

i f ( f r i c t i o n ){
localNu [ 0 ] += proxContact d . proxGf [ i ] . G1 [ 0 ] ∗ proxContact d . proxContactF [ i ] . p ;

localNu [ 1 ] += proxContact d . proxGf [ i ] . G1 [ 1 ] ∗ proxContact d . proxContactF [ i ] . p ;

localNu [ 2 ] += proxContact d . proxGf [ i ] . G1 [ 2 ] ∗ proxContact d . proxContactF [ i ] . p ;

}
}
i f ( proxContact d . proxContactN [ i ] . b2index == id ){

localNu [ 0 ] += proxContact d . proxGn [ i ] . G2 [ 0 ] ∗ proxContact d . proxContactN [ i ] . p ;

localNu [ 1 ] += proxContact d . proxGn [ i ] . G2 [ 1 ] ∗ proxContact d . proxContactN [ i ] . p ;

localNu [ 2 ] += proxContact d . proxGn [ i ] . G2 [ 2 ] ∗ proxContact d . proxContactN [ i ] . p ;

i f ( f r i c t i o n ){
localNu [ 0 ] += proxContact d . proxGf [ i ] . G2 [ 0 ] ∗ proxContact d . proxContactF [ i ] . p ;

localNu [ 1 ] += proxContact d . proxGf [ i ] . G2 [ 1 ] ∗ proxContact d . proxContactF [ i ] . p ;

localNu [ 2 ] += proxContact d . proxGf [ i ] . G2 [ 2 ] ∗ proxContact d . proxContactF [ i ] . p ;

}
}

}
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proxBody d . proxNu lp1 [ id ] . nu [ 0 ] = proxBody d . proxNu [ id ] . nu [ 0 ] + ( ( proxBody d . proxBodyExternal

[ id ] . pExt [ 0 ] + localNu [ 0 ] ) /proxBody d . proxBodyConsts [ id ] . mass ) ;

proxBody d . proxNu lp1 [ id ] . nu [ 1 ] = proxBody d . proxNu [ id ] . nu [ 1 ] + ( ( proxBody d . proxBodyExternal

[ id ] . pExt [ 1 ] + localNu [ 1 ] ) /proxBody d . proxBodyConsts [ id ] . mass ) ; ;

proxBody d . proxNu lp1 [ id ] . nu [ 2 ] = proxBody d . proxNu [ id ] . nu [ 2 ] + ( ( proxBody d . proxBodyExternal

[ id ] . pExt [ 2 ] + localNu [ 2 ] ) /proxBody d . proxBodyConsts [ id ] . mInert ia ) ; ;

// cuPr i n t f (” I am th r ead %d ! Nu lp1 [0 ]= %d\n” , id , proxBody d . proxNu lp1 [ i d ] . nu [ 0 ] ) ;

return ;

}

#ifde f DEBUG KERNEL HOST

g l o b a l void solveLCPProxNormal ( int numContacts , contac tPo in te r s proxContact d , bodyPointers

proxBody d ){
#else

d e v i c e void solveLCPProxNormal ( int numContacts , contac tPo in te r s proxContact d , bodyPointers

proxBody d ){
#endif

int id = get Id ( ) ;

i f ( amIDead( numContacts−1) ) return ; // k i l l u s e l e s s t h r e ad s a t b e g i nn in g

FULL p n s t a r = 0 ;

FULL rho = 0 ;

i f ( proxContact d . proxContactN [ id ] . b1index != −1){ // add v e l o c i t y o f body 1

rho += proxContact d . proxGn [ id ] . G1 [ 0 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] .

b1index ] . nu [ 0 ]

+ proxContact d . proxGn [ id ] . G1 [ 1 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b1index

] . nu [ 1 ]

+ proxContact d . proxGn [ id ] . G1 [ 2 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b1index

] . nu [ 2 ] ;

}
i f ( proxContact d . proxContactN [ id ] . b2index != −1){ // add v e l o c i t y o f body 2

rho += proxContact d . proxGn [ id ] . G2 [ 0 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] .

b2index ] . nu [ 0 ]

+ proxContact d . proxGn [ id ] . G2 [ 1 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b2index

] . nu [ 1 ]

+ proxContact d . proxGn [ id ] . G2 [ 2 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b2index

] . nu [ 2 ] ;

}

rho += proxContact d . proxContactN [ id ] . gap ;

// RHO FINISHED CALCULATING

// CALCULATE P N STAR

p n s t a r = proxContact d . proxContactN [ id ] . p − proxContact d . proxContactN [ id ] . r∗ rho ;

// en f o r c e prox c ond i t i o n ( p n > 0)

i f ( p n s t a r < 0){
p n s t a r = 0 ;

}

// save f i n a l v a l u e o f prox

proxContact d . proxContactN [ id ] . p = p n s t a r ;

// cuPr i n t f (” I am th r ead %d ! p = %f \n” , id , p roxContac t d . proxContactN [ i d ] . p ) ;

//###

// cuPr i n t f (” I am th r ead %d ! converged = %d\n” , id , p roxContac t d . convergedN [ i d ] ) ;

i f ( rho > convergeNormal ){
proxContact d . convergedN [ id ] = true ;

}
else {

proxContact d . convergedN [ id ] = fa l se ;

}
/∗ i f ( p roxContac t d . convergedN [ i d ] != t r u e ){
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c uPr i n t f (” I am normal t h r ead %d ! p = %f \n” , id , rho ) ;

}∗/
return ;

}

#ifde f DEBUG KERNEL HOST

g l o b a l void solveLCPProxFrict ion ( int numContacts , FULL co e f f F r i c t i o n , contac tPo in te r s

proxContact d , bodyPointers proxBody d ){
#else

d e v i c e void solveLCPProxFrict ion ( int numContacts , FULL co e f f F r i c t i o n , contac tPo in te r s

proxContact d , bodyPointers proxBody d ){
#endif

int id = get Id ( ) ;

i f ( amIDead( numContacts−1) ) return ; // k i l l u s e l e s s t h r e ad s a t b e g i nn in g

FULL p f s t a r = 0 ;

FULL rho = 0 ;

i f ( proxContact d . proxContactN [ id ] . p == 0 . 0 ) {// i f no normal f o r ce , then f r i c t i o n = 0

proxContact d . proxContactF [ id ] . p = 0 ;

proxContact d . convergedF [ id ] = true ;

return ;

}
// use proxContactN f o r b1 and b2 index , ( p o s s i b l y cached f o r f a s t e r a c c e s s )

i f ( proxContact d . proxContactN [ id ] . b1index != −1){ // add v e l o c i t y o f body 1

rho += proxContact d . proxGf [ id ] . G1 [ 0 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] .

b1index ] . nu [ 0 ]

+ proxContact d . proxGf [ id ] . G1 [ 1 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b1index

] . nu [ 1 ]

+ proxContact d . proxGf [ id ] . G1 [ 2 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b1index

] . nu [ 2 ] ;

}
i f ( proxContact d . proxContactN [ id ] . b2index != −1){ // add v e l o c i t y o f body 2

rho += proxContact d . proxGf [ id ] . G2 [ 0 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] .

b2index ] . nu [ 0 ]

+ proxContact d . proxGf [ id ] . G2 [ 1 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b2index

] . nu [ 1 ]

+ proxContact d . proxGf [ id ] . G2 [ 2 ] ∗ proxBody d . proxNu lp1 [ proxContact d . proxContactN [ id ] . b2index

] . nu [ 2 ] ;

}
/∗
i f ( ( (FULL) f a b s ( rho ) < c on v e r g eF r i c t i o n ) && ( proxContac t d . convergedF [ i d ] == t ru e ) ){

r e t u rn ;

}
e l s e ∗/ i f ( (FULL) fabs ( rho ) < conve rgeFr i c t i on ){

proxContact d . convergedF [ id ] = true ;

}
else {

proxContact d . convergedF [ id ] = fa l se ;

}

// RHO FINISHED CALCULATING

// CALCULATE P N STAR

p f s t a r = proxContact d . proxContactF [ id ] . p − proxContact d . proxContactF [ id ] . r∗ rho ;

// en f o r c e prox c ond i t i o n

i f ( p f s t a r < −( c o e f f F r i c t i o n ∗proxContact d . proxContactN [ id ] . p ) ){
p f s t a r = −( c o e f f F r i c t i o n ∗proxContact d . proxContactN [ id ] . p ) ;

proxContact d . convergedF [ id ] = true ;

}
else i f ( p f s t a r > ( c o e f f F r i c t i o n ∗proxContact d . proxContactN [ id ] . p ) ) {

p f s t a r = ( c o e f f F r i c t i o n ∗proxContact d . proxContactN [ id ] . p ) ;

proxContact d . convergedF [ id ] = true ;

}
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// save f i n a l v a l u e o f prox

proxContact d . proxContactF [ id ] . p = p f s t a r ;

return ;

}

#ifndef DEBUG KERNEL HOST

g l o b a l void solveLCPProxKernel ( int solveMode ,

int maxIters ,

int numContacts ,

int numConstrainedBodies ,

bool f r i c t i o n ,

FULL co e f f F r i c t i o n ,

FULL re laxCoe f f ,

contac tPo in te r s proxContact d ,

bodyPointers proxBody d ,

r e s u l t s t ∗ r e s u l t s d )

{
int id = get Id ( ) ;

// c a l c u l a t eR

i f ( solveMode == 1)

ca l cu la t eR ichardson ( re l axCoe f f , f r i c t i o n , numContacts , proxContact d ) ;

else i f ( solveMode == 2)

c a l c u l a t e J a c ob i ( r e l axCoe f f , f r i c t i o n , numContacts , proxContact d , proxBody d ) ;

else {
r e s u l t s d−>e r r o r =1;

return ;

}
// Update t h e b o d i e s v e l o c i t y to i n i t i a l i z e nu l p1

updateBodyNu ( f r i c t i o n , numContacts , numConstrainedBodies , proxContact d , proxBody d ) ;

int k = 0 ;

do{
k++;

i f ( id == 1){
r e s u l t s d−>globalConverge = true ; // s e t t o d e f a u l t

}
t h r e ad f en c e ( ) ;

solveLCPProxNormal ( numContacts , proxContact d , proxBody d ) ;

i f ( proxContact d . convergedN [ id ] == fa l se && ! amIDead( numContacts−1) )

r e s u l t s d−>globalConverge = fa l se ; // i f any con t a c t hasn ’ t converged , ensure i t e r a t i o n s

con t inue

i f ( f r i c t i o n ){
solveLCPProxFrict ion ( numContacts , f r i c t i o n , proxContact d , proxBody d ) ;

i f ( proxContact d . convergedF [ id ] == fa l se && ! amIDead( numContacts−1) )

r e s u l t s d−>globalConverge = fa l se ; // i f any con t a c t hasn ’ t converged , ensure i t e r a t i o n s

con t inue

}
// sync b e f o r e dynamics update

t h r e ad f en c e ( ) ;

updateBodyNu ( f r i c t i o n , numContacts , numConstrainedBodies , proxContact d , proxBody d ) ;

}while ( ! ( r e s u l t s d−>globalConverge ) && (k<maxIters ) ) ; // wh i l e not converged

i f ( id == 1){
r e s u l t s d−>numIters = k ;

r e s u l t s d−>e r r o r = 0 ;

r e s u l t s d−>overva lue = fa l se ;

}
return ;

}
#endif
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ HOST ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int numGrids ( int s i z e ){

return ( int ) c e i l ( ( f loat ) s i z e /32) ;

}

#ifde f DEBUG KERNEL HOST

bool ca l cu la teR ( int solveMode , FULL re laxCoe f f , bool f r i c t i o n , int numContacts , contac tPo in te r s

∗proxContact d , bodyPointers ∗proxBody d , cudaStream t ∗ stream ){
int numGrid = numGrids ( numContacts ) ;

i f ( solveMode == 1) { // Richardson

ca l cu lateRichardson<<<numGrid ,32 ,0 ,∗ stream>>>(r e l axCoe f f , f r i c t i o n , numContacts ,∗ proxContact d

) ;

}
else i f ( solveMode == 2) { // Jacob i

ca l cu l a t eJacob i<<<numGrid ,32 ,0 ,∗ stream>>>(r e l axCoe f f , f r i c t i o n , numContacts ,∗ proxContact d ,∗
proxBody d ) ;

}
else i f ( solveMode == 3) { // Gauss−S e i d e l

p r i n t f ( ”Gauss−Se i d e l not yet implemented , probably going to crash . . . \ n” ) ;

return fa l se ;

}

return true ;

}
#endif

extern ”C” bool solveLCPProx ( int solveMode ,

FULL re laxCoe f f ,

FULL co e f f F r i c t i o n ,

int maxIters ,

int numContacts ,

int numConstrainedBodies ,

contac tPo in te r s ∗proxContact d ,

contac tPo in te r s ∗proxContact h ,

bodyPointers ∗proxBody d ,

bodyPointers ∗proxBody h ,

r e s u l t s t ∗ r e s u l t s h ,

r e s u l t s t ∗ r e s u l t s d

)

#ifde f DEBUG KERNEL HOST

// k e r n e l s l aunched from ho s t

{
// c r e a t e s t reams

cudaStream t streams [ 2 ] ;

for ( int i = 0 ; i < 2 ; ++i )

cudaStreamCreate(&streams [ i ] ) ;

// DEBUG

cudaError t e r r o r ;

bool f r i c t i o n = ( c o e f f F r i c t i o n != 0 . 0 ) ;

int contactGrid = numGrids ( numContacts ) ;

int bodyGrid = numGrids ( numConstrainedBodies ) ;

/∗
// [ debug ] ### ###

s i z e t free mem , tota l mem , used mem ;

cuMemGetInfo ( &free mem , &tota l mem ) ;

used mem = total mem−free mem ;

p r i n t f (” t o t a l mem: %0.3 f MB, f r e e : %0.3 f MB, used : %0.3 f MB\n” ,
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( ( doub l e ) to ta l mem ) /1024 .0/1024 .0 ,

( ( doub l e ) free mem ) /1024 .0/1024 .0 ,

( ( doub l e ) used mem ) /1024 .0/1024 .0 ) ;

// [ end debug ] ∗/
#ifde f PRINT KERNEL ERRORS

// DEBUG

cudaThreadSynchronize ( ) ;

e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ”PreLCP Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif

// c a l c u l a t e R va l u e ( keep on gpu )

ca l cu la teR ( solveMode , r e l axCoe f f , f r i c t i o n , numContacts , proxContact d , proxBody d ,& streams [ 0 ] ) ;

#ifde f PRINT KERNEL ERRORS

// DEBUG

cudaThreadSynchronize ( ) ;

e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ” calcR Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif

// Update t h e b o d i e s v e l o c i t y to i n i t i a l i z e nu l p1

updateBodyNu<<<bodyGrid , 32 , 0 , streams [1]>>>( f r i c t i o n , numContacts , numConstrainedBodies , ∗
proxContact d ,∗ proxBody d ) ;

#ifde f PRINT KERNEL ERRORS

// DEBUG

cudaThreadSynchronize ( ) ;

e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ”Update1 Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif

// i n i t l oop v a r i a b l e s

bool converge = fa l se ;

bool o ldconverge = fa l se ;

int k = 0 ;

cudaThreadSynchronize ( ) ; // need nu l p1 and R to con t inue

solveLCPProxNormal<<<contactGrid , 32 , 0 , streams [1]>>>(numContacts ,∗ proxContact d ,∗ proxBody d ) ;

i f ( f r i c t i o n ){
solveLCPProxFriction<<<contactGrid , 32 , 0 , streams [1]>>>(numContacts , f r i c t i o n ,∗ proxContact d ,∗

proxBody d ) ;

}
cudaThreadSynchronize ( ) ; // g e t a s e t o f r e s u l t s t o s t a r t

#ifde f PRINT KERNEL ERRORS

// DEBUG

cudaThreadSynchronize ( ) ;

e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ”Prox1 Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif

do{
// g e t converge r e s u l t s from l a s t i t e r a t i o n

cudaMemcpyAsync ( proxContact h−>convergedN , proxContact d−>convergedN , s izeof (bool )∗numContacts

, cudaMemcpyDeviceToHost , streams [ 0 ] ) ;

i f ( f r i c t i o n ){
cudaMemcpyAsync ( proxContact h−>convergedF , proxContact d−>convergedF , s izeof (bool )∗

numContacts , cudaMemcpyDeviceToHost , streams [ 0 ] ) ;

}
#ifde f PRINT KERNEL ERRORS



108

// DEBUG

cudaThreadSynchronize ( ) ;

e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ”mem1 Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif

// update b o d i e s wh i l e copy i s in p r o g r e s s

updateBodyNu<<<bodyGrid , 32 , 0 , streams [1]>>>( f r i c t i o n , numContacts , numConstrainedBodies , ∗
proxContact d ,∗ proxBody d ) ;

k++;

// debugg ing code ###

// i f ( ! ( k%5) ){ p r i n t f (”%d th l oop \n” , k ) ;}
#ifde f PRINT KERNEL ERRORS

// DEBUG

cudaThreadSynchronize ( ) ;

e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ”update2 Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif

// queue up nex t s o l v e a f t e r b o d i e s update

solveLCPProxNormal<<<contactGrid , 32 , 0 , streams [1]>>>(numContacts ,∗ proxContact d ,∗ proxBody d ) ;

i f ( f r i c t i o n ){
solveLCPProxFriction<<<contactGrid , 32 , 0 , streams [1]>>>(numContacts , c o e f f F r i c t i o n ,∗

proxContact d ,∗ proxBody d ) ;

}
cudaPr int fDisp lay ( stdout , true ) ;

#ifde f PRINT KERNEL ERRORS

// DEBUG

cudaThreadSynchronize ( ) ;

cudaError t e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ”Prox2 Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif

// check r e s u l t s o f l a s t i t e r a t i o n f o r convergence

o ldconverge = converge ; // used to make sure 2 i t e r a t i o n s are s t a b l e

converge = checkConverge ( numContacts , f r i c t i o n , proxContact h ) ;

cudaThreadSynchronize ( ) ;

// p r i n t f (”R and Nu lp1 c a l c u l a t e d ?\n”) ;

cudaPr int fDisp lay ( stdout , true ) ;

}while ( ( ! converge ) && (k<maxIters ) ) ;

// }wh i l e ( ( ! o l d c onv e r g e ) && ( ! converge ) && ( k<maxI t e r s ) ) ;

// ( ! converge ) && ( k<maxI t e r s ) ###

p r i n t f ( ” f i n i s h e d at %d i t e r s \n” , k ) ;

// c l e an up s treams ( wa i t s t i l l s tream f i n i s h e d p r o c e s s i n g b e f o r e d e s t r o y )

for ( int i = 0 ; i < 2 ; ++i )

cudaStreamDestroy ( streams [ i ] ) ;

// copy r e s u l t s back to host , wa i t t i l l done

cudaMemcpy( proxBody h−>proxNu lp1 , proxBody d−>proxNu lp1 , s izeof ( proxNu t )∗numConstrainedBodies

, cudaMemcpyDeviceToHost ) ;

cudaThreadSynchronize ( ) ; // p r o b a b l y not needed

#ifde f PRINT KERNEL ERRORS

// DEBUG

cudaThreadSynchronize ( ) ;

e r r o r = cudaGetLastError ( ) ;

i f ( e r r o r != cudaSuccess ){
p r i n t f ( ”mem2 Simulat ion Error : %s\n” , cudaGetErrorStr ing ( e r r o r ) ) ;

}
#endif
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return true ;

}
#else

// e x t e rn ”C” boo l solveLCPProx d e f i n e d above

// s i n g l e k e r n e l l aunch per t ime s t e p

{
bool f r i c t i o n = ( c o e f f F r i c t i o n != 0 . 0 ) ;

int contactGrid = numGrids ( numContacts ) ;

solveLCPProxKernel<<<contactGrid ,32,0>>>(solveMode , maxIters , numContacts , numConstrainedBodies ,

f r i c t i o n , c o e f f F r i c t i o n , r e l axCoe f f ,∗ proxContact d ,∗ proxBody d , r e s u l t s d ) ;

cudaThreadSynchronize ( ) ;

cudaMemcpy( r e s u l t s h , r e s u l t s d , s izeof ( r e s u l t s t ) , cudaMemcpyDeviceToHost ) ;

p r i n t f ( ” f i n i s h e d at %d i t e r s \n” , r e s u l t s h−>numIters ) ;

cudaMemcpy( proxBody h−>proxNu lp1 , proxBody d−>proxNu lp1 , s izeof ( proxNu t )∗numConstrainedBodies

, cudaMemcpyDeviceToHost ) ;

return true ;

}

#endif

bool checkConverge ( int numContacts , bool f r i c t i o n , contac tPo in te r s ∗proxContact h ){

for (unsigned int i =0; i<numContacts ; i++){ // Check f o r t o t a l convergence

i f ( ( proxContact h−>convergedN [ i ] == fa l se ) | | ( ( proxContact h−>convergedF [ i ] == fa l se ) &&

f r i c t i o n ) ){
// p r i n t f (” not converged a t %d\n” , i ) ; ###

return fa l se ;

}
}
return true ; // I f d idn ’ t r e t u rn f a l s e yet , then must be converged

}

g l o b a l void pr intTest ( ) {
int id = get Id ( ) ;

cuPr in t f ( ” I am thread %d !\n” , id ) ;

}

extern ”C” void runTestCuda ( ) {

InitCUDA () ;

dim3 dimBlock (10 ,10) ; // under 512 t o t a l (1024 f o r 2 . 0 )

dim3 dimGrid (2 , 2 ) ; // under 65535 t o t a l

cudaPr i n t f I n i t ( ) ;

pr intTest<<<dimGrid , dimBlock>>>() ;

cudaPr int fDisp lay ( stdout , true ) ;

cudaPrintfEnd ( ) ;

} ;


