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ABSTRACT

For robotic systems to automatically plan and execute manipulation tasks involving

intermittent contact, one must be able to accurately predict the motions of the ma-

nipulated objects. Not surprisingly, many of the important manipulation problems

that could yield to closed-form analysis have been solved and studied thoroughly.

Problems characterized by intermittent contact are one particularly important type

of robotics problem for which research must rely on simulation techniques.

Due to the intermittency of contact and the presence of stick-slip frictional be-

havior, dynamic models of such multibody systems are inherently (mathematically)

nonsmooth, and are thus difficult to integrate accurately or quickly. Commercially

available software tools have a difficult time simulating systems with unilateral con-

straints, that is constraints where touching bodies are allowed to touch or separate,

but not interpenetrate. Users expect to spend considerable effort in a trial-and-error

search for good simulation parameters to obtain believable, not necessarily accurate,

results. Even the seemingly simple problem of a sphere rolling on a horizontal plane

under only the influence of gravity is challenging for commercial simulators. The

correct handling of unilateral contact constraints is one of the most difficult chal-

lenges left for many commercial simulation software packages.

This thesis relates to the use of simulation for planning and design of robotics

systems with intermittent contact. As previously noted, such systems arise in

many applications, including automated manufacturing, health care, and personal

robotics. The relationship between these seemingly unrelated application areas is

forged by the desire of interactive robotic devices situated in an unstructured world.

A better understanding of the dynamics, especially the contact dynamics, will al-

low us to improve the autonomy of these systems. In the first part of this work,

we introduce four new time-stepping methods, which were constructed for a vari-

ety of reasons, including accuracy, performance, and design. Next, we developed

a simulation software package (dubbed daVinci Code) that implements these new

methods. This software tool facilitates the simulation, analysis, and virtual de-

xiv



sign of multibody systems with intermittent frictional unilateral contact. Next, a

study on the applicability of our time-stepping method is presented. We performed

a numerical study on the accuracy of our methods, and experimentally validated

our time-stepper on a system composed of a vibrating rigid plate and interacting

part. With the accuracy of our time-stepper verified for this system, we were able

to study the inverse problem of designing new plate motions to generate a desired

part motion. Lastly, we present our initial results of a new non-recursive nonlinear

filter using our model of these systems. This filter allows us to estimate the sys-

tem’s parameters, which is a necessary requirement for using simulation for planning

and design. The filtering problem is particularly challenging, since the underlying

mathematical model is nonsmooth.
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1. Introduction

For robotic systems to automatically plan and execute manipulation tasks involv-

ing intermittent contact, one must be able to accurately predict the motions of

the manipulated objects. Not surprisingly, many of the important manipulation

problems that could yield to closed-form analysis have been solved and studied

thoroughly. Problems characterized by intermittent contact are one particularly

important type of robotics problem for which research must rely on simulation tech-

niques [24, 18, 99, 111, 55, 90]. Examples of robotics applications with contact for

which special-purpose simulations have been developed include the design of local

controllers for self-organizing systems [61], the synthesis and execution of grasping

and manipulation [26, 75, 114, 124], and parts feeding and assembly by vibrating

plates [96, 103, 119, 49].

Due to the intermittency of contact and the presence of stick-slip frictional be-

havior, dynamic models of such multibody systems are inherently (mathematically)

nonsmooth, and are thus difficult to integrate accurately or quickly. Commercially

available software systems have a difficult time simulating any system with unilat-

eral constraints, that is constraints where touching bodies are allowed to touch or

separate, but not interpenetrate. Users expect to spend considerable effort in a

trial-and-error search for good simulation parameters to obtain believable, not nec-

essarily accurate, results. Even the seemingly simple problem of a sphere rolling on

a horizontal plane under only the influence of gravity is challenging for commercial

simulators [24]. The correct handling of unilateral contact constraints is one of the

most difficult challenges left for many commercial simulation software packages.

Further evidence of the need for simulation can be found in the recent trend

of robotics researchers (those studying grasping, assembly, and dexterous manipu-

lation problems) using Open Dynamic Engine (ODE) [98]. ODE was developed for

computer game applications, which has led its developers to trade physical accuracy

for simulation speed while trying to achieve believability. Researchers that we have

communicated with on the topic of simulation cite ODEs poor accuracy and ask if

1
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we know of better simulation tools [77].

For an example of why we need simulation tools with improved accuracy, we

repeated, in simulation, an earlier grasping experiment performed by Brost and

Christensen [20] at Sandia National Labs. The authors were interested in develop-

ing manipulation strategies that reliably accomplished desired goals, in the presence

of uncertainty. The particular task they chose was to grasp a circular lock piece with

a parallel-jaw gripper. The goal of their experiment was to estimate the probabil-

ity of a successful grasp as a function of the starting position of the grippers. In

pursuit of their motivation, there was uncertainty in the gripper closing speed and

the coefficient of friction between the surface and part. They used two gripper

closing speeds, normal and fast (twice normal) and the surface was either clean or

purposefully contaminated with sand, affecting the coefficient of surface friction.

The idea behind their experiment was straight forward. They defined a box

of initial positions for the gripper, and executed a grasp for each point in the box

(sampled at 1-mm intervals). For each point in the box, the grasp was executed 30

times, and based on the result of the trial a success or failure was recorded. They

then estimated the success probability for each point as N/30, where N was the

number of observed successes for the point. It took them over 100,000 trials to

collect all the data. The cost was high, since expensive equipment and a technician

was dedicated to these experiments for more than a week. Performing this exper-

iment in simulation has the advantage of being faster and cheaper, but is useless

if the simulation is not accurate enough. In addition, simulation also opens the

possibility of designing grasp strategies while simultaneously computing the success

probabilities.

1.1 Contributions

My research contributions relate to the use of simulation for planning and

design of robotics systems with intermittent contact. As previously noted, such sys-

tems arise in many applications, including automated manufacturing, health care,

and personal robotics. The relationship between these seemingly unrelated appli-

cation areas is forged by the desire of interactive robotic devices situated in an
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unstructured world. A better understanding of the dynamics, especially the contact

dynamics, will allow us to improve the autonomy of these systems. The research

contributions of this thesis are:

• Four new time-stepping methods

– Study on accuracy

– Experimental validation

• Software package (dVC) that implements these methods

• Parameter identification for these nonsmooth nonlinear systems

In Chapter 3, four new time-stepping formulations are presented (see Fig-

ure 1.1 for a graphical representation). These formulations were constructed for a

variety of reasons, including accuracy, performance, and design. The first method

correctly handles non-penetration constraints for non-convex corners (the problem

occurring in figure 4.8) [36]. The next formulation is a method that adds surface

friction to a 2D body allowing for an approximation of surface friction effects with-

out the associated costs of modeling the entire 3D body [18]. Next is a time-stepping

formulation for multi-body quasi-static systems [112]. Despite being more restric-

tive than the dynamic model, it includes a large number of important tasks such as

low-speed assembly, static grasping, and walking using tripods of support. Lastly,

a fully implicit time-stepping scheme is presented [24, 23], which we believe is cur-

rently the most accurate time-stepping formulation available. This formulation won

best student paper at the Robotics: Science and Systems conference.

In Chapter 4, we present daVinci Code (dVC), which is a new software tool

we designed and implemented to facilitate simulation, analysis, and virtual design

of multibody systems with intermittent frictional unilateral contact [18]. dVC uses

the state-of-the-art time-stepping methods we developed to capture the nonsmooth

phenomena (stick-slip transitions and contact loss and formation) without regular-

ization. These methods are numerically stable and provably convergent.

In Chapter 5, we present the results of a study on the applicability of our

time-stepping method to a system composed of a rigid plate and a single rigid
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Figure 1.1: The four new time-stepping formulations are displayed along
with the existing Stewart-Trinkle time-stepper. The y axis is
the model space, and the x axis is the time-stepper accuracy.
The new methods are not mutually exclusive, for example it
is possible to combine the 2.5D, non-convex, and quasi-static
steppers together.

body [17]. The plate followed a prescribed periodic motion of small amplitude

and high frequency, such that the net force applied to the part appeared to be

from a time-independent, position-dependent velocity field in the plane of the plate.

Theoretical results obtained by Vose et al. were found to be in good agreement with

simulation results obtained with our time-stepping method. In addition, simulations

were found to agree with the qualitative experimental results of Vose et al. After

such verification of the simulation method, additional numerical studies were done

that would have been impossible to carry out analytically. For example, we were

able to demonstrate the convergence of the method with decreasing step size (as

predicted theoretically by Stewart [109]).

In Chapter 6, we again looked at the system composed of a vibrating rigid

plate and interacting part. With the accuracy of our time-stepper verified for this

system, we were able to study the inverse problem of designing new plate motions

to generate a desired part motion. This is done through an optimization framework,

where a simulation of the part interacting with the plate (including the full dynamics
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of the system) is performed, and based on the results of the simulation the motion of

the plate is modified. Vose kindly ran our learned plate motion on his experimental

device, and without any tuning (of the simulation parameters or device parameters)

verified our learned (by simulation) plate motion produced the desired part motion

on the actual device.

In Chapter 7, we present our initial results of a new nonrecursive nonlinear

filter for systems with complementarity [29] constraints. We formulate the estima-

tion problem as a mathematical program with equilibrium constraints (MPEC) [70]

and present some initial results for the dual estimation problem on simulated and

experimental data.



2. Background

Rigid multi-body dynamics with intermittent frictional contact is one of the most

challenging physical events to simulate. It is an active area of research in robotics,

gaming, and 3D graphics. This background chapter begins with a review of rigid

body motion. Next, it incorporates forces into the study of motion, leading to

the famous Newton-Euler equations of motion. Afterwards, a discussion on the

complementarity problem, and how one solves this problem is provided. Next,

traditional integrate-detect-restart methods for solving the constrained equations

of motion is shown. Lastly, the complementarity based time-stepping formulation

of the dynamics is presented.

2.1 Rigid Body Kinematics

Kinematics describes the motion of a body (more specifically, the motion of a

frame attached to a point on the body) solely as a function of time. The response

of a body subject to forces (dynamics) will be discussed in section 2.4. A rigid body

is an idealization of a physical object. Without providing the details, this common

modeling decision simplifies the mathematical description of the object’s motion by

allowing us to study the motion of a “reference frame” attached to the body. Given

two points in a rigid body, their relative distance is fixed for all time. Enforcing this

modeling decision requires that rigid bodies cannot be inter-penetrated or deformed

(though, current research does allow for local deformations).

2.1.1 Position and Orientation

An unconstrained rigid body has six degrees of freedom: three translational

and three rotational. The configuration (i.e. position and orientation) of the body

can be represented by an orthonormal reference frame attached to a point on the

body (see figure 2.1). For convenience (when we get to dynamics), this frame is

usually attached to the center of mass of the body, but this is not a requirement.

By convention, we also assume that the frame is right-handed.

6
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Figure 2.1: Position and orientation of a rigid body specified by a body
fixed reference frame {A} with origin at the center of mass of
body A, denoted A∗.

A frame {A} is orthonormal and right-handed if its 3 basis vectors, a1, a2, a3

satisfy:

1. ||ai|| = 1, i = 1, 2, 3

2. ai · aj = 0, i, j = 1, 2, 3, i 6= j

3. a1 × a2 = a3

The first condition is the normality constraint, the second condition is the orthogo-

nality constraint, and the final condition is the right-hand rule.

Let AR = [a1 a2 a3] be a 3 × 3 matrix. This matrix can be considered an

orthonormal basis for E3, where E3 is the 3-dimensional Euclidean space. This

allows one to uniquely represent a vector v ∈ E3 by a vector in R3:

v = ARTAv (2.1)

where Av ∈ R3 is the representation of v in the coordinate frame {A}.
A vector v can be represented in various frames:

v = ARTAv = BRTBv (2.2)

where {B} is an orthonormal frame and Bv is the coordinates of v in frame {B}.
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The two representations are related by (since AR is orthogonal, ARART = I):

Av = ARBRTBv (2.3)

This 3×3 matrix ARBRT that converts the representations between frames is often

called a rotation matrix (or direction cosine matrix), and is denoted as A
BR.

The position of the rigid body is described by the position of the body fixed

frame with respect to a fixed (also known as inertial or Newtonian) world frame.

The orientation of the rigid body can represented by the rotation matrix associated

with the body fixed frame and the fixed world frame. There are, however, many

possible ways to parameterize the rotation, and the next section briefly discusses

some of them.

2.1.2 Rotation Group

One interpretation of the rotation matrix, and the reason for its name, is that

it rotates frames:

AR = A
BRBR (2.4)

This leads directly to the definition that R is a rotation if for any orthonormal

frame {A}, RAR is also an orthonormal frame. All rotation matrices (orthonormal

matrices with positive determinant) form a group called the special orthogonal group

of dimension 3, denoted SO(3):

SO(3) =
{
R | R ∈ R3×3, RTR = RRT = I, det(R) > 0

}
(2.5)

The condition det(R) > 0 enforces the right-hand rule constraint, and is the reason

for the name special in special orthogonal group.

However, there are other possible representations of SO(3) in addition to rota-

tion matrices [72, 123], for example Euler angles, Gibbs-Rodrigues’ representation,

Euler parameters etc. We recommend using Euler parameters (unit quaternions) for

parameterizing orientation since they are compact (4 elements) and do not suffer

from singularities (singularities are discussed in section 2.1.4.1). Euler proved that

general motion of a rigid body with a fixed point is a rotation about a fixed axis.
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This allows one to use a single rotation about a fixed axis instead of decomposing

the motion into three simple rotations as is commonly done (Euler angles). The

drawback of this representation is that instead of requiring three parameters, one

for each simple rotation angle, it requires 4 parameters, one for the angle of rotation

and three for the axis of rotation. Let the vector b̂ denote a unit vector parallel to

the axis of rotation and θ the angle of rotation about this fixed axis. We can now

define the 4 parameters in terms of b̂ and θ as

ev = b̂ sin

(
θ

2

)
ew = cos

(
θ

2

)
where ev = [ex ey ez]

T is the vector component of the quaternion and ew is the scalar

component. Taken together, (ew, ev) is a four parameter representation of SO(3)

with one constraint, e2
w + ||ev||2 = 1.

If the Euler parameters are a different representation of SO(3), it should be

possible to transform them to a corresponding rotation matrix. This is indeed

possible, and given (ew, ev), the corresponding rotation matrix R is [123]:


1− 2e2

y − 2e2
z 2exey − 2ewez 2exez + 2ewey

2exey + 2ewez 1− 2e2
x − 2e2

z 2eyez − 2ewex

2exez − 2ewey 2eyez + 2ewex 1− 2e2
x − 2e2

y

 (2.6)

2.1.3 Euclidean Group

The group of rotations, SO(3), can be extended to allow both rotations and

translations. For a body A, let {A} be the orthonormal frame attached to the

body representing its orientation and let rOA be a vector from a reference point to

the origin of the reference frame {A} (see figure 2.2). Taken together, (rOA , AR)

represent the position and orientation of body A by the following homogeneous

transformation matrix:

AT =

 AR rOA

01×3 1

 (2.7)
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The set of all such matrices that represent rigid body displacements is called

the special Euclidean group of order 3, denoted SE(3):

SE(3) =

T | T =

 R r

01×3 1

 , R ∈ SO(3), r ∈ R3

 (2.8)

a
3

a
2

a
1

*
A

b 3

b 2

b 1*

B

r
OBA

Figure 2.2: Displacement of body A to body B.

We can construct a transformation matrix representing the displacement from

body A to body B (given in A’s frame) as:

A
BT =

 A
BR ArOB

01×3 1

 (2.9)

where ArOB = A
FR(OB−OA) and A

BR is a rotation matrix that transforms from {B}
to {A}.

The composition of two displacements, first from {A} to {B}, and second from
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{B} to {C} can be achieved by matrix multiplication of ABT and B
CT:

A
CT =

ACR ArOC

0 1


=

ABR ArOB

0 1

BCR BrOC

0 1


=

ABRB
CR A

BRBrOC + ArOB

0 1


(2.10)

The group SO(3) is a subgroup of SE(3), where the displacement vector r = 0.

It can be thought of as the group of all spherical displacements:

A
BT =

 R 0

01×3 1

 (2.11)

2.1.4 Velocity of a Rigid Body

The first derivative of the body’s motion gives an expression for the ve-

locity. Considering the two components, position and orientation, of the body’s

configuration separately, we can define two velocity components: linear velocity

v = [vx vy vz]
T and angular velocity ω = [ωx ωy ωz]

T . The linear velocity is the

time derivative of the translational position vector

v = ṙ (2.12)

where the (̇) notation is shorthand for the derivative with respect to time, e.g.

ṙ =
dr

dt
. The vector v is the velocity at the origin of the moving frame attached to

the body, which may or may not be the body’s center of mass.

Similar to linear velocity, angular velocity is the time rate of change of the

body’s orientation. However, unlike linear velocity there is no notion of an orien-

tation vector, so the definition of angular velocity is not the time derivative of a

vector. The angular velocity of a reference frame {B} in a reference frame {A},



12

denoted AωB, is defined1 as [58]

AωB
M
= b1

Adb2

dt
· b3 + b2

Adb3

dt
· b1 + b3

Adb1

dt
· b2 (2.13)

Using this definition of angular velocity, we can obtain the time derivative of

any vector fixed in the body. Let Bv = [vx vy vz]
T be any vector fixed in body B’s

frame, then

Adv

dt
= AωB × Bv =


0 ωz −ωy
−ωz 0 ωx

ωy −ωx 0



vx

vy

vz

 (2.14)

For a physical interpretation of the angular velocity, the magnitude of ω is the

rate the body is rotating, and the direction of ω is the axis of rotation.

2.1.4.1 Kinematic Update

Given an angular velocity of a rigid body, the orientation is determined by

integrating the differential equations for one of the many possible parameterizations

of orientation (described in section 2.1.2). In general, if q ∈ Rk is a representation

of SO(3), the goal is to find the representation Jacobian G(q) ∈ Rk×3 such that

dq

dt
= G(q)ω (2.15)

If G loses rank (called a singularity of the representation), then q cannot be solved

for. These singularities are purely mathematical and a function of the specific rep-

resentation, not a function of a physical process.

We recommend using Euler parameters for parameterizing SO(3), and as

such now present the differential kinematics for them. For Euler parameters, q =

1 This is not the frequently given definition of angular velocity as the limit of δθ
δt as δt goes to

0. However, this definition makes the relationship between the time-derivative of a vector and the
cross-product multiplication easier to show.
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[ew ex ey ez], the representation Jacobian is given by [27, 104]:

G(q) =
1

2


−ex −ey −ez
ew ez −ey
−ez ew ex

ey −ex ew

 (2.16)

This Jacobian can never become singular, which is why we prefer the use of Euler

parameters for representing orientation.

2.1.4.2 Velocity of a Point on a Rigid Body

Given a point p on a rigid body B, the position of p in the body fixed frame

{B}, denoted Brp, is constant. However, the position of p in another frame {A},
denoted Arp(t), is a function of time since the position of body B in A’s frame,

ArOB(t), is a function of time (see figure 2.3).

a 3

a 2

a 1

*A

r
a p

b 3

b 1b 2

*
B

rb
p

r
A p

r
A O

p

p

b

Figure 2.3: Velocity of a point p on a rigid body.

Using the Euclidean frame and homogeneous coordinates for rigid body dis-
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placement, the position of point p in frame A is:

Arp = A
BT

Brp

1


=

ABR ArOB

0 1

Brp

1


=

ABRBrp + ArOB

1


(2.17)

Differentiating equation (2.17) with respect to time and using the definition of

angular velocity (equation 2.13) we can compute the velocity of the point p in A’s

frame, Avp, as

Avp =
d

dt
(ABRBrp) +

d

dt
(ArOB)

= AωB × Brp +A vB
(2.18)

which can be written more compactly as

Avp =A vB + Aω̃BBrp (2.19)

where Aω̃B is a skew-symmetric matrix operator with the form:
0 ωz −ωy
−ωz 0 ωx

ωy −ωx 0


2.1.4.3 Twists

A twist is a compact representation for expressing the displacement or motion

(often called velocity) of a rigid body. A twist, ν ∈ R6, consists of the linear and
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angular velocity components concatenated2 into a single vector:

ν =

v

ω

 (2.20)

where v is the linear velocity of the frame and ω is the angular velocity of the frame.

Using homogeneous coordinates and twists allows us to compactly represent

the motion of rigid bodies. Looking back at the equation for the velocity of a point

(equation (2.19)), we can rewrite it as,

Avp = A
BH

Brp

1

 (2.21)

where the A
BH ∈ R4×4 is a matrix operator defined as:

A
BH =

Aω̃B AvB

01×3 0

 (2.22)

2.2 Kinetics

Where kinematics describes the motion of a particle, kinetics looks at how the

motion is related to the forces acting upon it. This section describes a general repre-

sentation of forces and then present Newton’s second law using this representation.

In general a system of forces and moments acting on a body cannot be reduced

to a single resultant force or a single resultant moment. Instead, the forces are added

into a single resultant force and the moments are added about the body’s center of

mass (this is why the frame’s origin is usually placed at the center of mass) into

a resultant moment. For example, if a body was being acted upon by f forces,

F1, . . . ,Ff and m moments M1, . . . ,Mm, the resultant force F and moment M are

2In many algebra texts, a twist is defined with the angular component first, followed by the
linear elements. Since classical mechanics traditionally represents position and velocity with the
linear terms first, we have swapped the order but will continue to call it a twist.
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Figure 2.4: Forces and moments acting on a rigid body.

given by:

F =

f∑
i=1

Fi

M =
m∑
i=1

Mi +

f∑
i=1

ri × Fi

(2.23)

where ri is a vector from center of mass to the point where the force Fi is acting

(see figure 2.4).

2.2.1 Wrenches

We just showed that a system of external forces and moments can be combined

into a single resultant force and resultant moment. If we combine these two resultant

values into a single vector λ, we arrive at the definition of a wrench,

λ =

F

M

 (2.24)

In practice, it is important to remember that the wrenches are written with

respect to the basis vectors of a body frame, the force F is applied to the origin of

the body frame, and the moment M is acting about the origin of the body frame.
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2.2.2 Transforming Twists and Wrenches

Similar to how the 4× 4 transformation matrix, ABT =

 A
BR ArOB

01×3 1

, trans-

forms vectors between different frames, we can construct a transformation matrix to

transform twists and wrenches between different frames [78]. Given twists Aν and

Bν represented in frames {A} and {B} respectively, they are related by:

Aν = A
BAdBν (2.25)

where A
BAd is:

A
BAd =

ABR A
BR

0 [Ar̃OB ]ABR

 (2.26)

The inverse of the adjoint transform that transforms a twist from frame {A}
to frame {B} is the adjoint that transforms a twist from frame {B} to frame {A}:

Aν = A
BAdBν = B

AAd−1Bν (2.27)

Wrenches are related by the transpose of the adjoint matrix,

Aλ = A
BAdTBλ (2.28)

2.2.3 Equations of Motion

Describing the equations of motion for a rigid body begins by considering the

body to be a collection of particles. The distance between the particles is fixed and

the mass is integrated over the collection [72]. In this fashion, the center of mass

of the body behaves as if it was a particle, and we can apply the Newton-Euler

equations of motion to the center of mass.

To describe the dynamic model mathematically, we first introduce some nota-

tion. Let qj be the position and orientation of a frame attached to body j’s center

of mass in an inertial frame and νj be the velocity twist of the origin of the frame.

Newton’s 2nd law relates the sum of the forces acting on the body to the
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acceleration of the body:

F(qj, q̇j, t) = m(qj, t)q̈j (2.29)

where m(qj, t) the mass of body j, and F(qj, q̇j, t) the sum of all forces acting on

body j. As explained in section 2.1.4.1, the dimension of qj is not necessarily the

same as the dimensions of q̇j and q̈j.

Similar to Newton’s law, Euler’s equation relates the resultant moment applied

to the body to the angular momentum:

τ (qj, q̇j, t) = I(qj, t)ω̇j + ωj × I(qj, t)ωj (2.30)

where τ (qj, q̇j, t) denotes the resultant moment acting on body j and I(qj, t) the

inertia tensor for body j. Typically, I is known in the body fixed frame {B}, BI,

and must be converted to the fixed frame {F}, I = F
BRBIFBRT .

2.3 Complementarity Problem

As we will show in section 2.4, one natural way to model the dynamics of

a system with frictional intermittent contact is as a differential complementarity

problem (DCP) [85]. In this section we provide the basic definitions of various

forms of complementarity problems, all of which will be seen in later sections.

Definition 1 (Differential Complementarity Problem). Let g(u,v) : Rn1 × Rn2 →
Rn1 and f(u,v) : Rn1×Rn2 → Rn2 be given vector functions of u ∈ Rn1 and v ∈ Rn2 ,

with n1 + n2 = n. Find u and v satisfying

u̇ = g(u,v), u, free

0 ≤ v ⊥ f(u,v) ≥ 0

Typically, the DCP is not solved directly but instead a time-stepping scheme is

employed and the resulting (possible nonlinear) mixed complementarity problem [29,

85] is solved at each time step.

Definition 2 (Mixed Complementarity Problem). Let g(u,v) : Rn1 × Rn2 → Rn1

and f(u,v) : Rn1 × Rn2 → Rn2 be given vector functions of u ∈ Rn1 and v ∈ Rn2 ,
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with n1 + n2 = n. Find u and v satisfying

0 = g(u,v), u, free

0 ≤ v ⊥ f(u,v) ≥ 0

In the special case that the functions g and f are linear, we arrive at the

definition for a mixed linear complementarity problem (MiLCP) [29]:

Definition 3 (Mixed Linear Complementarity Problem). Let A ∈ Rn1×n1 , B ∈
Rn2×n2 , C ∈ Rn1×n2 , and D ∈ Rn2×n1 be given matrices. Let a ∈ Rn1 and b ∈ Rn2

be given vectors. Find u and v satisfying

0 = a + Au + Cv

0 ≤ v ⊥ b + Du + Bv ≥ 0
(2.31)

If the matrix A is non-singular in the mixed LCP (2.31), the mixed LCP can be

converted in the standard LCP [29] by letting q = b−DA−1a and M = B−DA−1C.

Definition 4 (Linear Complementarity Problem). Let M ∈ Rn×n and q ∈ Rn be

given vectors. Find z ∈ Rn satisfying

0 ≤ z ⊥ q + Mz ≥ 0 (2.32)

2.3.1 Finding Solutions of Complementarity Problems

There is no guaranteed solution method for general LCPs except for enumer-

ation, which has a cost of O(2n) where n is the size of the LCP matrix. It is well

known that a LCP(q,M) can be solved in polynomial time if M is a positive semi-

definite matrix [80]. There are a number of algorithms available for finding solutions

of LCPs and they generally fall into one of two categories, direct or iterative.

Direct methods are the most accurate methods for solving LCPs and are guar-

anteed to terminate in finite time. These solvers include Lemke’s algorithm [80, 65],

the Dantzig-Cottle method [30], Murty’s method [79], and numerically improved

Lemke [59]. However, Lemke’s method solves the largest class of problems, in-

cluding being one of the most robust algorithms available for solving LCPs arising
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from the complementarity based formulation of frictional multi-rigid-body dynamics

(section 2.6). Mathematically, Lemke’s method will solve an LCP(M,q) if M is a

copositive plus matrix. Such matrices are defined as:

uTMu ≥ 0 for all u ≥ 0, (2.33)

if uTMu = 0 and u ≥ 0, then (M + MT )u = 0 (2.34)

where the first equation is the definition of copositive matrices, and the second equa-

tion is the restriction for being plus. However, when solving mixed LCPs, Lemke’s

algorithm must convert the mixed LCP into a pure LCP, which is usually done with

Schur complements (i.e. pivot out the equation and then perform Lemke’s method

on the reduced problem). This matrix operation is expensive, removes the sparcity

of the matrices, and when the matrix becomes degenerate or ill-conditioned can

even sometimes fail. An active area of research is in improving Lemke’s method for

these ill-conditioned LCPs, e.g. [59]. In addition, Lemke’s method is not amendable

to warm starting with previous solutions, which leads to practical inefficiencies. In

practice, algorithms based on Lemke’s method exhibit an average runtime of O(n3),

where n is the rank of the matrix and, therefore, do not scale as well as iterative

methods.

Indirect methods, or iterative methods, have the advantages of being much

easier to implement and they can scale to much larger problems, but they do not

have a finite time termination guarantee like the direct methods. In fact, it has

been shown in [40] that iterative methods require a large number of iterations to

converge to both accurate contact constraint enforcement and accurate friction re-

sponse. Most of the iterative algorithms for solving LCPs are specializations of

nonlinear programming algorithms applied to quadratic programs that are equiva-

lent to the original LCP [80] (i.e. the solution of the LCP is the equilibrium point

of an associated quadratic program). However, in the LCPs for frictional contact

that arise in section 2.6, the coupling of the normal force with the frictional forces

means the LCP cannot be reformulated as a quadratic program. In fact, it does not

correspond to a minimization or even a saddle point problem.
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Iterative schemes for LCPs of this form reply upon splitting methods. One type

of splitting method is known as matrix splitting [84]. Consider the LCP (q,M) of

size n. If M = B+C, it is said to be a splitting of the matrix M. For matrix splitting

methods to be useful, the LCP(p,B) should be easily solved, e.g. B triangular with

positive diagonals, which corresponds to the frictionless LCP.

Another splitting technique is known as operator splitting, where the original

LCP problem is broken apart into two problems. The solution to the original prob-

lem is found by finding a solution that satisfies both subproblems simultaneously.

The solution process becomes, find a solution to subproblem 1, use that solution as

input to subproblem 2, repeat until convergence satisfied. For this method to be

practical, it relies on each of the subproblems being easier to solve than the original

problem, e.g. each subproblem can be reformulated as a convex quadratic program.

This is a popular solution method since it is amendable to warm starting, scales

well, is easy to implement, and appears to converge in practice in a few iterations;

however there are no convergence guarantees. Papers based on this method include,

[51, 56, 35, 8, 40, 60].

2.4 Complementarity formulation of Dynamics

There are several requirements the complementarity formulation of dynamics

must satisfy. Firstly, it must satisfy the Newton-Euler equations of motion (sec-

tion 2.2) and the kinematic update law (section 2.1.4.1). Additionally, it must

allow for joint constraints, which constrain the relative positions of two bodies,

which in turn impose velocity and acceleration constraints. There are also several

requirements on how to handle contact constraints. The model must prevent inter-

penetration of the bodies at the contacts, must enforce that the contact forces are

compressive (i.e. contact forces cannot pull the bodies together), must enforce a

friction law, and lastly must have an impact resolution law.

The Newton-Euler equations and kinematic update law form a system of or-

dinary differential equations. The joint constraints will be discussed in section 2.4.1

and add a system of (nonlinear) algebraic equations. The contact conditions will be

discussed in section 2.4.2, and are given by a system of complementarity constraints.
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Considering all parts together, the dynamic model is a differential complementarity

problem (DCP) as defined in definition 1.

To describe the dynamic model mathematically, we re-introduce some nota-

tion. Let qj be the position and orientation of a frame attached to body j’s center

of mass in an inertial frame and νj be the velocity twist of the origin of the frame.

The generalized coordinates, q, and generalized velocity, ν of the whole system are

formed by concatenating qj and νj respectively.

The Newton-Euler equations (2.29)–(2.30) can be compactly written in matrix

form as:

M(q, t)ν̇ = λvp(q, q̇, t) + λapp(q, t) (2.35)

where

M =



m1I 0 0 0

0 I1 0 0
. . .

0 0 mnI 0

0 0 0 In


Additionally, we split apart the applied wrenches into those dependent on configu-

ration, λapp, and those dependent on configuration and velocity, λvp. For example,

the force due to gravity would appear in λapp, whereas the velocity product term in

the Euler equation (ω × Iω) would appear in λvp.

The kinematic update law (section 2.1.4.1) can also be written compactly for

all bodies:

q̇ = G(q)ν (2.36)

where

G(q) =


G(q1) 0

. . .

0 G(qn)

 , G(qi) =

I3×3 0

0 J(qi)


and J(qi) ∈ R4×3 was defined in equation 2.16 and relates the change in the ith

body’s Euler parameters to its angular velocity.

Taken together, equations (2.35) and (2.36) are enough to model unconstrained
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rigid body motion subject to applied wrenches. Simulation of a set of unconstrained

rigid bodies is insufficient for use in studying robotics. Robotic systems are gener-

ally composed of links that are connected by simple joints constraining the relative

motion of the connected bodies. The links may move either in free space (e.g mov-

ing a robot arm to an object) or in contact with an object, (e.g grasping the target

object). This section explains how we model these constraints mathematically.

The two types of constraints considered in this thesis, joints and contact, are

mathematically modeled differently. Joint constraints fall into a class of constraints

known as bilateral constraints and are mathematically modeled with algebraic equa-

tions. Contact constraints kinematically fall into a class of constraints known as

unilateral constraints, which are mathematically modeled as algebraic inequalities.

However, in the dynamical analysis of contact, there are relationships involving

forces that are mathematically modeled with complementarity conditions.

2.4.1 Equality Constraints

Joints constrain the relative positions of two bodies, which in turn impose

velocity and acceleration constraints. Mathematically, joint constraints are modeled

as algebraic equations involving the unknowns of the system,

Φi(q, t) = 0 (2.37)

where Φi is the constraint function for the particular joint i and q is the vector of

all bodies’ configurations concatenated together.

The joint constraint function can be differentiated to obtain the constraint at

the velocity level:
dΦi

dt
=
∂Φi(q, t)

∂q
q̇ +

∂Φi(q, t)

∂t
ṫ = 0 (2.38)

Using equation (2.36) to substitute G(q)ν for q̇ and the fact that dt
dt

= 1, the velocity

level constraint simplifies to:

0 = WT
ib(q, t)ν +

∂Φi(q, t)

∂t
(2.39)
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where Wib(q, t)T =
∂Φi(q, t)

∂q
G(q) is known as the constraint Jacobian3 matrix.

The constraint Jacobian
∂Φi(q, t)

∂q
takes on different forms dependent on the desired

joint [28, 39].

Similarly, to express the kinematic constraint at the acceleration level one

would take the derivative one more time.

Let there be nb bilateral constraints and let WT
b =


WT

1b

...

WT
nbb

 be the concate-

nated vector of all the bilateral wrenches. The bilateral constraints for the entire

system, specified at the velocity level, can be written as:

0 = WT
b (q, t)ν +

∂Φ(q, t)

∂t
(2.40)

Since the joint constraints are typically a function of one or two bodies, the matrix

WT
b tends to be very sparse.

There are numerical difficulties that arise when specifying the position level

constraints at a velocity or acceleration level, most noticeable being drift. Later

sections will describe various techniques available for stabilizing these constraints.

2.4.1.1 Bilaterally Constrained Dynamics Formulation

We can reuse the bilateral constraint Jacobian WT
b to relate the joint wrenches

to the center of mass of each body. Each column of WT
b is the wrench corresponding

to a unit force applied to the body’s center of mass. In other words, each column of

WT
b is a basis vector for the constraint force. This allows us to solve for a vector of

constraint force magnitudes, λb coupled to the system. With these new constraint

forces, we can augment equations (2.35) and (2.36) with the new constraint forces

and the constraint equation arriving at the following system of mixed differential-

3In robotics, the Jacobian is sometimes referred to as a “Wrench” matrix, since the rows of the
matrix are unit wrenches.
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algebraic equations (DAE) of index4 3:

q̇ = G(q)ν

M(q, t)ν̇ = Wb(q, t)λb + λapp(q, t) + λvp(q,ν, t)

Φ(q, t) = 0

(2.41)

where λb is the vector of bilateral constraint force magnitudes and Wb is the trans-

pose of the bilateral constraint Jacobian.

2.4.2 Contact

Contact constraints arise between pairs of bodies and serve two roles, prevent

the bodies from inter-penetrating and effect a friction law at the point (or patch)

of contact. There are two common approaches for handling contacts, Rigid and

Visco-Elastic methods.

2.4.2.1 Rigid Contact

There are difficulties inherent with rigid contact constraints, the most difficult

being that an impact between rigid bodies is a non-smooth event. During this impact

phase, there is an instantaneous change in the velocity of the bodies to prevent

penetration. This instantaneous change in the velocity is caused by an impulsive

force and makes integrating through an impact event problematic. Another difficulty

is that contacts are intermittent, they appear when two bodies touch, and disappear

when the bodies separate. A contact law must allow for both the transition from

no contact to contact, and vice versa. Lastly, friction laws can lead to non-unique

solutions or no solutions to the system [107].

When two bodies j and k (j 6= k) are in (potential) contact (figure 2.5), we

label the contact point as i, and consider it uniquely associated with the pair (j, k).

Let nc denote the total number of contact points at the current time t. Each contact

point i of bodies j and k defines the origin of a contact frame Λi. Let n̂i denote

the unit contact “normal” vector, that is the normalized vector from the contact

4the index is one plus the number of differentiations of the constraints that are needed in order
to eliminate the Lagrange multipliers
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Figure 2.5: Coordinate system for contact constraints

point on j to the contact point on k. Let ψin denote the signed distance between

the contact points on bodies j and k (by definition of the normal vector, ψin is

the distance in the normal direction). The other 2 axes5 of the contact frame Λi,

denoted t̂i and ôi, span the contact tangent plane.

When modeling the contact constraints, it becomes convenient to break them

into their two components: the normal and tangential constraints.

Normal Contact (Nonpenetration) Constraints The normal contact con-

straint prevents inter-penetration of the bodies, but must also allow for separation.

Physically, the contact forces are compressive, meaning the contact force cannot

pull the two bodies together. For each contact, we there is signed distance func-

tion ψin(q, t), which equals 0 when bodies j and k are touching at contact i, the

positive distance when the two bodies are not touching at i, and returns negative

penetration distance6 when the bodies are inter-penetrating at i. Equation (2.36)

provides a connection between the distance functions and the matrix Wn as fol-

lows: WT
n = ∂ψn

∂q
G. Note that one can define analogous (local) tangential displace-

ment functions ψt and ψo with elements ψit and ψio for which the following hold:

WT
t = ∂ψt

∂q
G and WT

o = ∂ψo

∂q
G.

Analogous to before, we stack all the active contact gap functions into a single

vector, ψn obtaining the constraint:

ψn(q, t) ≥ 0 (2.42)

5In 2D systems there is only one other axis. We would remove either the o or the t axis.
6The distance function must be able to return a negative distance if two bodies are overlapping

for numerical stability. Otherwise, if a small penetration occurs from numerical errors and the
distance at contact i did not become negative, the penetration will continue to get worse.
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Let λin be the magnitude of the normal contact force at the ith contact point

and let λn be the concatenated vector of all normal contact force magnitudes. Unlike

the joint constraints, the normal contact forces at a contact cannot pull the bodies

together:

λn ≥ 0 (2.43)

Additionally, at each contact there is a naturally occurring disjunctive rela-

tionship between the normal gap, ψin, and normal contact force, λin. Namely, if

the contact is producing a normal contact force (λin ≥ 0) then the normal distance

between the two bodies must be zero (ψin = 0). Conversely, if there is a gap between

the two bodies (ψin ≥ 0), then the normal contact force must be zero (λin = 0).

This final constraint can be written as:

ψn(q, t)Tλn = 0 (2.44)

Equations (2.42), (2.43), and (2.44) taken together represent the nonpenetra-

tion constraint, which is a complementarity constraint and is often written using a

more compact notation:

0 ≤ ψn(q, t) ⊥ λn ≥ 0 (2.45)

Tangential Contact Constraints (Friction) The contact forces in the tangen-

tial plane must satisfy a given friction model. In this section, Coulomb’s dry friction

law is presented. Coulomb’s law is the most common model of friction available, de-

rived in the 18th century after many experimental trials. There are many variants on

Coulomb’s original law, e.g. [115], and while the basic law still stirs up controversy,

it has been successfully used in practice and makes a good law for presentation.

Coulomb’s friction law requires that the contact force remain within a cone

defined by the magnitude of the normal force, λn and the coefficient of friction µ.

When the contact is rolling, the magnitude of the friction force is bounded by µλn

with no constraints on the direction; when the contact point is sliding, the direction

of the friction force must be opposite the sliding direction, and the magnitude must

be exactly µλn.
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This law can be written mathematically using the maximum dissipation prin-

ciple, which states that given a normal force magnitude and relative slipping at the

contact, the frictional force is the one that maximizes the rate of energy dissipation.

Let λin ≥ 0, let Fi(µi, λin) denote the friction cone at contact i:

Fi(µi, λin) = {(λit, λio) : µ2
iλ

2
in − λ2

it − λ2
io ≥ 0} (2.46)

where µi is the coefficient of friction acting at contact i. Next, define orthogonal

sliding velocity components vit and vio. The vectors of sliding velocities for all the

contacts are: vt = WT
t ν+ ∂ψt

∂t
and vo = WT

o ν+ ∂ψo

∂t
with ith elements vit = WT

itν+

∂ψit

∂t
and vio = WT

ioν + ∂ψio

∂t
, respectively. Then using the maximum dissipation

principle, Coulomb’s law at contact i may be written as follows:

(λit, λio) ∈ arg max
(λit,λio)∈Fi

(−λitvit − λiovio) , (2.47)

The equations that the solution of this optimization problem must satisfy can-

not be determined from the Karush-Kuhn-Tucker (KKT) necessary conditions [16]

because there are no applicable regularity conditions at a solution with λin = 0 or

µi = 0. To obtain the optimality conditions, one must use the Fritz–John condi-

tions [16], and for completeness we present the derivation as it has appeared else-

where in the literature [113, 103]. The Fritz–John optimality conditions that the

friction forces at contact i must satisfy are:

0 = ui0vit + ui2λit (2.48)

0 = ui0vio + ui2λio (2.49)

0 ≤ ui ⊥ µ2
iλ

2
in − λ2

it − λ2
io ≥ 0 (2.50)

ui0 ≥ 0, (ui0, ui) 6= 0 (2.51)

where ui0 and ui are Lagrange multipliers arising from the conversion.

Unlike the KKT conditions, the Fritz–John conditions require an extra multi-

plier that must be solved for, ui0. In the literature, ui0 is replaced with µiλin, leaving
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only one multiplier to solve for, ui. Obviously µiλin ≥ 0, and when µiλin = 0, a

non-zero ui trivially satisfies the Fritz–John conditions. The constraints in equa-

tion (2.51) can now be removed, and the substitution also provides a physical inter-

pretation to the ui Lagrange multiplier, it is half the slip speed at the ith contact

point.

To see this and to also arrive at the commonly shown equations we will now

show the algebraic steps to making this substitution. First, if ui = 0, this implies

that ui0 > 0. Otherwise, if ui > 0 we can solve for λit and λio from equations (2.48)

and (2.49), respectively:

λit =
ui0vit
2ui

λio =
ui0vio
2ui

. (2.52)

and recognize that the right hand side of the complementarity constraint in equa-

tion (2.50) must now equal 0. Substituting λit and λio into the right hand side of

the complementarity constraint, which must now be an equality condition, results

in:

µ2
iλ

2
in =

(
ui0vit
2ui

)2

−
(
ui0vio
2ui

)2

(2.53)

and solving for ui0

ui0 =
2uiµiλin√
v2
it + v2

io

(2.54)

Substituting ui0 into equations (2.48) and (2.49) we arrive at

0 =
2uiµiλin√
v2
it + v2

io

vit + ui2λit (2.55)

0 =
2uiµiλin√
v2
it + v2

io

vio + ui2λio (2.56)

which simplifies to:

0 = µiλinvit + σiλit (2.57)

0 = µiλinvit + σiλio (2.58)

where σi =
√
v2
it + v2

io, the slip speed at contact i.
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We have now replaced ui0 with µiλin and ui with σi in equations (2.48) and

(2.49). Replacing ui with σi in the complementarity constraint (equation (2.50)) also

works. When u1 > 0, the right hand side of equation (2.54) is positive, and therefore

σ2
i > 0 → σi > 0. When u1 = 0, this implies ui0 > 0, and from equations (2.48)

and (2.49) vit = 0 and vio = 0, implying that σi = 0.

We have now shown through algebraic manipulation that after replacing ui0

with µλin and using σi as the remaining Lagrange multiplier equations (2.48)– (2.50)

still hold, and we can now remove equation (2.51). Hence, we arrive at the formu-

lation commonly seen in the literature:

0 = µiλinvit + λitσi (2.59)

0 = µiλinvio + λioσi (2.60)

0 ≤ σi ⊥ µ2
iλ

2
in − λ2

it − λ2
io ≥ 0 (2.61)

Compactly, Coulomb’s law for all contacts is:

0 = (Uλn)◦(vt) + λt◦σ (2.62)

0 = (Uλn)◦(vo) + λo◦σ (2.63)

0 ≤ σ ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0 (2.64)

where U is the diagonal matrix with ith diagonal element equal to µi and ◦ connotes

the Hadamard product, i.e. u ◦ v = [u1v1 u2v2 . . . unvn]T .

Equations (2.62)–(2.64) are nonlinear (quadratic) in the unknowns, so their

direct use in a time-stepping scheme would require the solution of a mixed nonlinear

complementarity problems. In order to obtain a scheme based on mixed LCPs [110],

a piecewise linear approximation of the quadratic friction cone with nonnegative

force variables is needed (see figure 2.6). Let nd friction force direction vectors dj

be chosen such that they positively span the space of possible friction forces, and

let (λif)j be the friction force components in those directions. Also, let (ψif(q, t))j

be the corresponding (local) tangential displacement function.
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Figure 2.6: Friction cone approximated by an eight-sided pyramid de-
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The frictional force can be approximated as Wf(q)λf, where λf ∈ Rncnd has nc

elements λif ∈ <nd with elements (λif)j, the vectorψf ∈ Rncnd is defined analogously,

and WT
f = ∂ψf

∂q
G.

The approximate friction cone can be represented as:

F i(µi, λin) = {λif | µiλin − eTλif ≥ 0, λif ≥ 0} (2.65)

where e ∈ Rnd is vector of ones. Let vif = [(vif)1 ... (vif)nd
]T = ∂ψif

∂q
Gν = WT

ifν be

the vector of components of the sliding velocity at contact i in the friction directions.

The approximate version of the dissipation condition becomes:

λif ∈ arg max
λif∈F i

(
−λTifWT

ifν
)
. (2.66)

Reusing the slack variable σi (with slightly different meaning now), a useful

equivalent LCP formulation of the maximum dissipation condition for the approxi-

mate friction cone is:

0 ≤ λif ⊥WT
ifν + eσi +

∂ψif

∂t
≥ 0 (2.67)

0 ≤ σi ⊥ µiλin − eTλif ≥ 0, (2.68)

where now σi approximates the sliding speed at contact i. Maximum dissipation for
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all contacts can be written compactly as:

0 ≤ λf ⊥WT
f ν + Eσ +

∂ψf

∂t
≥ 0 (2.69)

0 ≤ σ ⊥ Uλn − ETλf ≥ 0 (2.70)

where E is the block diagonal matrix with ith block on the main diagonal given by

e.

2.4.3 Instantaneous Formulation of Constrained Dynamics

If the quadratic form of Coulomb’s friction law is used, we arrive at a nonlinear

DCP formulation of the dynamics. If instead the discretized version of the law is

used, we arrive at a linear DCP formulation. Both forms are presented below.

2.4.3.1 Nonlinear DCP Formulation

Using equations (2.41), (2.42)–(2.44), and (2.62)–(2.64), the nonlinear DCP

can be written as:

M(q)ν̇ = Wn(q)λn + Wt(q)λt + Wo(q)λo + λapp(q, t) + λvp(q,ν, t)

q̇ = G(q)ν

0 = Φ(q, t)

0 = (Uλn)◦(vt) + λt◦σ

0 = (Uλn)◦(vo) + λo◦σ

0 ≤ λn ⊥ ψn(q, t) ≥ 0

0 ≤ σ ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0

(2.71)
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2.4.3.2 Linear DCP Formulation

Using equations (2.41), (2.42)–(2.44), (2.69), and (2.70), the linear DCP can

be written as:

M(q)ν̇ = Wn(q)λn + Wf(q)λf + λapp(q, t) + λvp(q,ν, t)

q̇ = G(q)ν

0 = Φ(q, t)

0 ≤ λn ⊥ ψn(q, t) ≥ 0

0 ≤ λf ⊥WT
f ν + Eσ +

∂ψf

∂t
≥ 0

0 ≤ σ ⊥ Uλn − ETλf ≥ 0

(2.72)

2.4.4 Visco-Elastic Contacts

While the above time-stepping method provides accurate simulation for a large

class of problems, it does not handle well impact dynamics with restitution or phe-

nomena such as micro-slip. In [102] a model appropriate for such situations was

derived and a time-stepping method analogous to that above was developed. In this

method, the surfaces near each contact are discretized and sets of coupled lumped

springs and dampers are inserted between pairs of interior points (in the rigid core

of the body) and boundary points (on the compliant surface of the body) on the

discretized contact patch.

In this section we describe the 3D linear viscoelastic model of contact [63, 100].

For simplicity of exposition, we consider only one of the objects to be flexible at each

contact. The general formulation where both the bodies are flexible will contain the

additional constraint that the contact forces acting on both the bodies have to be

equal.

Concatenating all the individual force components into vectors allows us to

write for each contact (we drop subscript i for legibility),

λ = Kδ + Cδ̇ (2.73)

where λ = [λn,λt,λo] and δ = [δn, δt, δo] are 3 × 1 column vectors with δn, δt, δo
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being the normal and tangential deflection. The matrices K, C are stiffness and

damping matrices given by

K =


Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo

 C =


Cnn Cnt Cno

Ctn Ctt Cto

Con Cot Coo


For systems with multiple contacts, the contact forces λ, and body deformations δ

become concatenations of nc subvectors, where nc is the number of contacts. The

stiffness and damping matrices are block diagonal matrices of size 3nc × 3nc, where

each diagonal block of size 3× 3 represent one contact.

Figure 2.7: Sequence of simulation steps illustrating the oscillation prob-
lem arising from penalty based collision response methods.

One problem with penalty based methods is that of oscillation. In figure 2.7, a

rectangular body is dropped onto a surface. The vertex of the body that penetrates

the most gets the penalty force, and the body will rotate causing the most penetrat-

ing point to change. Then the penalty force is applied to the other vertex, causing

the body to rotate in the other direction, and the other vertex becomes again the

most penetrated. This switching will continue forever (without artificial damping),

the end result being that the body never comes to rest on the surface and appears to

vibrate. In addition, a compliant layer requires the time when contact first occurs

to be determined accurately. To accommodate these needs, an adaptive time step

adjustment is required [41].

Another method for handling locally compliant models was developed in [88].

Instead of using a grid of lumped springs and dampers to model the contact patch,

the surface around a point of contact is modeled as an elastic half-space. Addi-

tionally, they avoid the problem of identifying point correspondences between the

bodies, allowing them to separate the problems, and iteratively solve two smaller
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LCPs instead of one large LCP.

The introduction of the compliant layer on the body surfaces causes the dy-

namic equations to become numerically stiff. Consequently, when contacts exist in

the system, the size of the time step must be reduced significantly, by many orders

of magnitude when the springs are very stiff. The very small time steps required

by this method and the large number of variables that are added when contact

patches are finely discretized motivate our philosophy to include a range of models

and time-stepping methods in our simulation package (described in Chapter 4).

2.5 Solving Constrained Equations of Motion

One of the most popular traditional methods for solving the constrained dy-

namics equations (equations (2.72) or (2.71)) consists of the integrate-detect-restart

methods [53]. Typically in these methods, an active set of unilateral constraints

is chosen and the bilaterally constrained system is solved. After a solution to the

bilaterally constrained system of equations is found, the solution is analyzed for

violation of any unilateral constraint. If a violation is found, the time stepper must

determine the time of violation, and go back to fix the violated constraint. These

schemes have difficulties handling multiple unilateral constraints since there is no

upper bound on the number of subproblems to solve in finite time [113].

More recently [66], unilateral constraints have been incorporated directly into

the equations of motion as constraint impulses. This approach is similar to those

used in the complementarity methods discussed in the next section, but the authors

instead use a Gauss-Seidel iterative method to solve for the contact constraint im-

pulses instead of complementarity techniques. The main benefit of simultaneously

solving the contact constraints with discretized equations of motion is that at the

end of a time step, the system is in a physically feasible state. No post-processing

of the result is required.

In the following discussion, unilateral constraints will be ignored, and various

techniques for solving the bilaterally constrained systems (DAE) of equations are

presented. At the end of the section, a discussion on incorporating the unilateral

constraints is made.
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As stated earlier, typically the acceleration level form of the constraints is

used, which allows us to represent equations (2.41) in matrix form as the following

reduced index-1 DAE. M(q, t) Wb(q, t)

WT
b (q, t) 0

 ν̇
λb

 =

λapp(q, t) + λvp(q,ν, t)

γ(q, t)

 (2.74)

where γ = −
(
∂Wb(q, t)T

∂q

)
ν− 2

[(
∂WT

b (q, t)

∂t

)
ν

]
− ∂

2Φ(q, t)

∂t2
. The acceleration

and Lagrange multiplier can be obtained as the solution of the following matrix form

DAE:  ν̇
λb

 =

M(q, t) Wb(q, t)

WT
b (q, t) 0

−1 λapp(q, t) + λvp(q,ν, t)

γ(q, t)

 (2.75)

To guarantee the inverse exists, these methods must assume [91] that the following

properties hold:

Wb(q, t) is full rank

aTM(q, t)a > 0 ∀a ∈ ker WT
b (q, t), a 6= 0

As mentioned before, analytical solutions of (2.75) will also satisfy both the ve-

locity level form of the constraints (2.39) and the original position level form (2.37),

however, numerical solutions will not. Many methods have been developed for find-

ing a numerical solution to equation (2.75), most of which fit into one of three

categories: Constraint stabilization, Projected invariants, or State space.

2.5.1 Stabilization Methods

Early constraint stabilization methods were based on Baumgarte [15]. In his

method, he observed the modified equation

Φ̈ + αΦ̇ + βΦ = 0
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where α, β ∈ R and α, β > 0 is stable. Therefore, the acceleration constraint

equation is modified, becoming:

Wb(q, t)Tν̇ = γ(q, t)− α
(

WT
b ν +

∂Φ

∂t

)
− βΦ

The stabilization is then to simply use this modified version of the acceleration

constraint in the integration. The problem with this method is that there is no

reliable way to choose values for the coefficients α and β.

Another stabilization technique transforms the DAE into a system of first order

ODEs. Looking back at equations (2.74) (and dropping functional dependencies for

brevity),

ν̇ = M−1
(
λapp + λvp

)
+ M−1Wbλb

WT
b ν̇ = γ

we can solve for λb:

λb = (WT
b M−1Wb)−1

(
WT

b M−1
(
λapp + λvp

)
− γ

)
and substitute it back into equation (2.41) obtaining an ODE system for ν and q

q̇ = Gν

Mν̇ = Wb

[(
WT

b M−1Wb

)−1 (
WT

b M−1
(
λapp + λvp

)
− γ

)]
+
(
λapp + λvp

) (2.76)

However, as before there is a drift on the constraints at the velocity and position

level. We could again apply Baumgarte’s technique, however Ascher et al. [9] found

difficulties with this method and present their own stabilization technique.

The underlying ODE can be written as

ż = f̂(z)
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where z = (q, ν) and a stabilization term is added to the right hand side

ż = f̂(z)− αF(z)h(z)

where α > 0 is a parameter, F (z) is a matrix with a variety of choices (see [9]

for more details), and h(z) =

 Φ(q, t)

Wb(q, t)Tν

. Similarly, the difficulties with this

method are the selection of F(z) and α.

2.5.1.1 Projection Methods

Projection methods integrate all generalized coordinates at each time step.

Consider the reduced index 1 DAE (2.74), or the system of ODEs (2.76) and the

position and velocity constraints constraints (2.37), (2.39). Taken together, the

system (2.74), (2.37), and (2.39) form an overdetermined DAE. Again, numerical

integration will not satisfy the constraints, so additional multipliers are introduced.

There are two main ways to project the solution onto the constraint manifold.

The first is to introduce an extra multiplier µ to insure the velocity constraint

equation is also satisfied, and we arrive at the following stable index 2 DAE:

q̇ = G(q)ν −Wb(q, t)µ

Mν̇ = Wb(q, t)λb + λapp(q, t) + λvp(q,ν, t)

Φ(q, t) = 0

Wb(q, t)Tν = 0

If desired, the DAE can be reduced to an index 1 and an additional multiplier can be

introduced along with the requirement that the acceleration constraint be satisfied.

The other projection technique is known as coordinate projection. Unlike

the above method where the derivative is modified by a multiplier to enforce the

constraint, the integration of the underlying ODE is performed and the solution

found at the end of the step is projected back onto the constraint manifold. Using

this method, it is possible to choose which constraint manifold to project the solution

onto, or possibly both.
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2.5.1.2 State-Space Methods

In state space methods, the problem is reformulated into a local state-space

form using a local parameterization of the constraint manifold [81]. If there are n

generalized coordinates in q and m < n constraints in Φ(q, t), the dimension of the

reduced ODE becomes n−m. To derive the local ODE, consider at each point t, a

matrix R ∈ R(n−m)×n, such that

 R

Wb(q, t)T

 is nonsingular. The local ODE can

be derived for the state-space variable

u = Rq

The choice of the constraint parameterization varies among algorithms.

An advantage of this formulation is the reduced size of the problem. However,

the constraint equations are usually nonlinear, and a parameterization can be only

locally determined. When the constraint is violated, a new parameterization must

be formulated, adding to the computational overhead. It also requires a robust

detection scheme, to determine violation. The nonlinearity also increases the effort

required to obtain dependent generalized coordinates through the parameterization,

since a solution of nonlinear equations is required.

2.5.2 Unilateral Constraints

To find a solution that satisfies the unilateral constraints, the points of discon-

tinuity (switch points) must be found. Once these switch points are identified, we

have a set of piece-wise smooth solutions between each set of them. At each switch

there exists some transition law, and the physically correct solution must be chosen

from a large set of possible states. This combinatorial searching becomes intensive

very quickly. For example, if the unilateral constraint is a contact constraint (more

on contact in the next section) with friction then there are three possible states: sep-

arate, roll, or slide. If there are n active constraints, the number of possible states

becomes 3n. This trial-and-approach soon becomes computationally intractable for

large numbers of active unilateral constraints.

We have shown in the instantaneous formulation of dynamics with unilateral
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contact (2.72) that the system becomes a more complicated differential algebraic

inequality. Baraff studied the multiple rigid body with contact problem [12], and

determined that computing contact forces is NP-hard [10] in the presence of friction.

As stated earlier, it is because of these computational issues that many traditional

methods choose to identify the switch points, and solve piecewise smooth DAEs.

In constraint-based methods, the collision or impact forces have to be treated

differently from the resting contact forces. This is because impact forces are dis-

continuous impulsive forces occurring for a single instant of time, unlike constraint

forces which are present over an interval. These very large forces (theoretically in-

finite) over a very short period of time (theoretically infinitely small) are difficult

to numerically integrate and are often times special cased. During a time step,

one must find the time at which the collision occurred, and stop the integration

at this point in time. The collision forces are then calculated using a collision re-

sponse method (e.g. [122]). After these impulses for impact are computed, the new

velocities are found and the integrator is restarted with these new initial conditions.

Another technique for handling rigid body impact is the so called impulse based

method [76]. In this method, all modes of contact are handled via impulses applied

to the body. Under this formulation, a block resting on a table is experiencing

many tiny collisions with the table, and each of these collisions is resolved using

only local information at the point of contact. One drawback of impulse-based

formulations is that they become collision intensive, since collisions are used to

determine all interactions between bodies and collision detection can often times

become the bottleneck in dynamic simulation. Extra care must be taken to ensure

that static or resting contact does not produce an energy loss to the system, since

they are static workless forces (see [76] for more details).

2.6 Time-Stepping Formulation of Rigid Body Dynamics

A desirable outcome for any time-stepping scheme is that its solution at the

end of each time step of the discrete-time model equals the (continuous) solution of

the instantaneous-time model at the same time. Typically however, computational

efficiency and/or convergence issues force one to design a scheme that does not
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exactly meet this outcome. To prepare for the design of a time-stepper that solves a

linear problem for each time step, the quadratic friction cone was approximated by a

piecewise linear cone. In the following, two time-stepping schemes will be presented.

The unknowns for both are the velocity vector, configuration vector, contact forces,

and sliding speeds at the end of the time step.

The Stewart-Trinkle formulation [110] builds upon the same complementarity

principles developed earlier by Trinkle and Pang [113]. The difference being that the

previous work was an instantaneous approach solving for forces and accelerations

to update velocities and positions. As stated earlier, problems arise in force based

formulations due to the discontinuities in velocity. In contrast, the Stewart-Trinkle

method is position based, using complementarity principles for the position, solving

for impulses and velocities at the end of a time step. They can incorporate impulses

without any difficulties by using the integral of the forces over a time-step, which

are finite even if there is an impulsive force.

Let t` denote the current time and h be the time step (the term h is also

often called the step size). Use the superscripts ` and ` + 1 to denote quantities

at beginning and end of the `th time step respectively. Using ν̇ ≈ (ν`+1 − ν`)/h
and q̇ ≈ (q`+1 − q`)/h, where q` = q(t`), we get the following nonlinear and linear

discrete time systems.

2.6.1 Nonlinear Complementarity Problem Formulation

The nonlinear DCP from equation (2.71) is discretized as:

Mν`+1 = Mν` + h(Wnλ
`+1
n + Wtλ

`+1
t + Woλ

`+1
o + λ`app + λ`vp)

q`+1 = q` + hGν`+1

0 = (Uλ`+1
n )◦(v`+1

t ) + λ`+1
t ◦σ`+1

0 = (Uλ`+1
n )◦(v`+1

o ) + λ`+1
o ◦σ`+1

0 ≤ λ`+1
n ⊥ ψn(q`+1) ≥ 0

0 ≤ σ`+1 ⊥ (Uλ`+1
n )◦(Uλ`+1

n )− λ`+1
t ◦λ`+1

t − λ`+1
o ◦λ`+1

o ≥0

(2.77)

where ψin(q`+1, t`+1) ≈ ψin(q`, t`) + hWT
inν

`+1 + ∂ψl
n

∂t
.
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If we evaluate W(·) and λvp at `+ 1, we have a fully implicit formulation [24]

with an approximation in the gap function. If we evaluate W(·) and λvp at `, we

recover the Stewart-Trinkle formulation [110] with quadratic friction law.

2.6.2 Linear Complementarity Problem Formulation

The linear DCP from equation (2.72) is discretized as:

0

0

ρl+1
n

ρl+1
f

sl+1


=



−M Wb Wn Wf 0

WT
b 0 0 0 0

WT
n 0 0 0 0

WT
f 0 0 0 E

0 0 U −ET 0





ν`+1

p`+1
b

p`+1
n

p`+1
f

σ`+1


+



Mν l + papp + pvp

Φ`

h
+ ∂Φ`

∂t

ψ`
n

h
+ ∂ψ`

n

∂t
∂Ψ`

f

∂t

0


(2.78)

0 ≤


ρ`+1

n

ρ`+1
f

s`+1

 ⊥


p`+1
n

p`+1
f

σ`+1

 ≥ 0 (2.79)

where p(·) = hλ(·) and ρl+1 = ψl+1/h.

2.7 Examples

In this section we clarify the complementarity based formulation of multi-rigid-

body simulation through use of illustrative 2D examples. It begins the examples

with a simple planar 2 bar pendulum and continues by adding more and more

complexity to the subsequent examples.

For these examples, we must use the 2D analogs of the operators defined previ-

ously. There is no cross product for 2D vectors, so instead we use the perpendicular

product, denoted by ⊗
u⊗ v = uxvy − uyvx (2.80)

In addition, instead of a skew-symmetric matrix operator, we have a perpendicular

operator:

a∧ =

−ay
ax

 (2.81)
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2.7.1 Planar 2 Bar Pendulum

This system consists of a planar simple double pendulum with all joint axes

parallel to the Z-axis. It is constructed of two slender rods A and B with masses

mA and mB respectively. Link A has length LA and is connected to ground at point

O. Link B has length LB and is connected to link A at point P by point P′. Frames

are attached to each body and are fixed in that body. The position and orientation

of the frames are used as the generalized coordinates. Figure 2.8 illustrates a free

body diagram of the system.

a
1

a
2

x

y

m
A

L
A

A,

m
B

b
1

b
2

p’
B,

L
B

o p
g

Figure 2.8: Free Body Diagram of Simple planar double pendulum.

The configuration q of the system is q = [qA qB] and similarly the velocity

twist of the system is ν = [νA νB].

For this system, the generalized mass matrix is

M =



mA 0 0 0 0 0

0 mA 0 0 0 0

0 0 1
12
mAL

2
A 0 0 0

0 0 0 mB 0 0

0 0 0 0 mB 0

0 0 0 0 0 1
12
mBL

2
B


(2.82)

where 1/12mAL
2
A is the moment of inertia for a slender rod.

There are 2 bilateral constraints on this system, the position of point O is fixed
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in the world frame and the position of points P and P ′ must lie in the same location.

Let point O be (0, 0) in the fixed world frame. Next, attach a “joint” frame {α} with

its origin at point O. For computational simplicity align the joint frame axes with

the world frame axes. We can mathematically write the first bilateral constraint φ1

as

φ1 , (αFR) A∗ + (αFR)
(
F
AR
)
ArA

∗O = 0 (2.83)

where A∗ is the location of body A’s center of mass and rA
∗O is a vector from the

center of mass to the point O. However, since we aligned the joint frame with the

fixed world frame, (αFR) is the identity matrix and the constraint simplifies to:

φ1 , A∗ +
(
F
AR
)
ArA

∗O = 0 (2.84)

The second bilateral constraint is that points P and P′ lie at the same location.

Again, attach a “joint” frame {β} at points P and P′ aligned with the world frame.

The constraint that the points cannot separate can be written as:

φ2 , P−P′ = A∗ +
(
F
AR
)
ArA

∗P −
[
B∗ +

(
F
BR
)
BrB

∗P ′
]

= 0 (2.85)

However, the unknowns in the time-stepping formulation are not position they

are velocity. Therefore, the constraints must be enforced at the velocity level. For 2D

revolute joints, the linear velocity is constrained to be zero by two scalar equations,

while the angular velocity is unconstrained. We know from equation (2.19) the

linear velocity of a point attached to a rigid body. Setting this equation equal to

zero will satisfy the 2D revolute joint constraint, however, we will set up the joint

constraint more generally in a framework that allows for other joint types, and for

this revolute joint we will recover equation (2.19).

The constraint Jacobian is most easily specified in the joint’s frame, however

the velocity twist of the body is of the body’s center of gravity in the fixed world

frame. Therefore, to constrain the joint, we must first align the body frame with

the world frame7, followed by a coordinate transform of the resulting velocity twist

7It is important to realize that AνA is not 0. Another way of thinking of this velocity is as
A′
νA, where A′ is located at the origin of the fixed frame, but instantaneously aligned with the
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to the joint frame. With the velocity twist in the correct frame, we can apply the

constraint Jacobian. Mathematically, the constraint can be written as:

0 =
[
αJA

]
[αAAd] AνA =

1 0 0

0 1 0

(αAR)
(
(αAR) ArA

∗O
)∧

01×2 1

(AFR
)

0

01×2 1

νA
=
[
I
(
(αAR) ArA

∗O
)∧]

νA

(2.86)

where the matrix
[
αJA

]
is the constraint Jacobian for a 2D revolute joint specified

at the joint frame. As stated earlier, the constraint equation reduced to the equation

for the linear velocity of a point attached to the rigid body.

The second bilateral constraint (the revolute joint between links A and B) can

also be written in matrix form as:

[
βJA

] [
β
AAd

]
AνA +

[
βJB

] [
β
BAd

]
BνB = 0 (2.87)

Expanding equation (2.87):

0 =

1 0 0

0 1 0

(βAR
) ((

β
AR
)
ArA

∗P
)∧

01×2 1

(AFR
)

0

01×2 1

νA
+

−1 0 0

0 −1 0

(βBR
) ((

β
BR
)

rB
∗P ′
)∧

01×2 1

(BFR
)

0

01×2 1

νB
=

[
I
((

β
AR
)
ArA

∗P
)∧]

νA +

[
−I −

((
β
BR
)
BrB

∗P ′
)∧]

νB

(2.88)

Using our notation,

WT
b1 =

[
I
(
(αAR) ArA

∗O
)∧]

WT
b2 =

[
I
((

β
AR
)
ArA

∗P
)∧]

(2.89)

WT
b3 =

[
−I −

((
β
BR
)
BrB

∗P ′
)∧]

(2.90)

moving body frame A. This is why the transformation of FνA to AνA has 0 for the position vector
in the top right block of the transform matrix (defined in equation (2.26)).
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Combining the 3 constraints into a single matrix WT
b produces the constraint wrench

for the system:

WT
b =

WT
b1 0

WT
b2 WT

b3

 (2.91)

We can now formulate the mixed complementarity problem:06×1

04×1

 =

−M Wb

WT
b 0

ν`+1

p`+1
b

+

Mν` + hλapp

1
h
φ`

 (2.92)

where 1
h
φ` is the constraint stabilization term for the bilateral constraints and φ` is

obtained from equations (2.84) and (2.85): A∗ +
(
F
AR
)
ArA

∗O

A∗ +
(
F
AR
)
ArA

∗P −
[
B∗ +

(
F
BR
)
BrB

∗P ′
]
 (2.93)

2.7.2 Planar 2 Bar Pendulum Attached to Block

This system consists of a planar simple double pendulum attached to a block

with all joint axes parallel to the Z-axis. The pendulum is constructed of two

slender rods A and B with masses mA and mB respectively. Link A has length LA

and is connected to the block at point O by point O′. Link B has length LB and

is connected to link A at point P by point P′. Initially, the block is at rest on a

horizontal surface. Frames are attached to each body and are fixed in that body.

The position and orientation of the frames are used as the generalized coordinates.

Figure 2.9 illustrates the system.

The configuration q of the system is q = [qC qA qB] and similarly the velocity

twist of the system is ν = [νC νA νB].

The bilateral constraint between links A and B of the pendulum is identical

to the previous example. The constraint between the pendulum and the block at

point O must now be handled, it can be written in matrix form as:

[
I
(
(αCR) CrC

∗O
)∧]

νC +

[
−I −

(
(αAR) ArA

∗O′
)∧]

νA (2.94)
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Figure 2.9: A planar simple double pendulum with all joint axes parallel
to the Z-axis attached to a block on a surface.

Partitioning into the bilateral constraint wrenches:

WT
b1 =

[
I
(
(αCR) CrC

∗O
)∧]

WT
b2 =

[
−I −

(
(αAR) ArA

∗O′
)∧]

(2.95)

WT
b3 =

[
I
((

β
AR
)
ArA

∗P
)∧]

WT
b4 =

[
−I −

((
β
BR
)
BrB

∗P ′
)∧]

(2.96)

The nonpenetration constraints between the block and floor are written as:

ψ1n = (ncR) cr1 ≥ 0 (2.97)

ψ2n = (ncR) cr2 ≥ 0 (2.98)

where r1 and r2 are shown in figure 2.9. Vectors r1 and r2 are constant in the body

fixed frame {C}, and must be transformed into the inertial frame {F} to determine

the gap above the floor. Each gap function has a corresponding multiplier λin which

is the contact force between contact i and the floor.
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2.7.2.1 System Dynamics

Assuming the two contacts are included in the active set every time step, the

MCP is size 15 and the various quantities appearing in it are:

M =


Mc 03×3 03×3

03×3 Ma 03×3

03×3 03×3 Mb

 (2.99)

where Mc =


mc 0 0

0 mc 0

0 0 Ic

, Ma =


ma 0 0

0 ma 0

0 0 Ia

, and Mb =


mb 0 0

0 mb 0

0 0 Ib

. The

scalar Ic = 1
12
mc(l

2
c + w2

c ) is the moment of inertia for a 2D block and the scalars

Ia = 1
12
mal

2
a and Ib = 1

12
mbl

2
b are the respective moments of inertia for rod’s A and

B.

The system constraint wrenches are:

WT
b =


WT

b1

... WT
b2

... 02×3

. . . . . . . . . . . . . . . .

02×3
... WT

b3

... WT
b4

 Wn =



n̂1
... n̂2(

F
CR
)
Cr1 ⊗ n̂1

...
(
F
CR
)
cr2 ⊗ n̂2

. . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

. . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1


(2.100)

For the terms appearing in the MCP’s b vector:

λapp =
[
0 −mcg 0 0 −mag 0 0 −mbg 0

]T

(2.101)

where g is the gravitational acceleration constant.

The bilateral constraint stabilization terms are again obtained from the posi-
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tion level constraint functions:

φ` =

C∗ +
(
F
CR
)
CrC

∗O −
(
A∗ +

(
F
AR
)
ArA

∗O′
)

A∗ +
(
F
AR
)
ArA

∗P −
(
B∗ +

(
F
BR
)
BrB

∗P ′
)
 (2.102)

We now also have unilateral constraint terms, and these are obtained from

equations (2.97) and (2.98):

ψ`
n =

(ncR) cr1

(ncR) cr2

 (2.103)

Putting it all together, we can now formulate the mixed complementarity

problem for this example:
09×1

04×1

ρ`+1
n

 =


−M Wb Wn

WT
b 0 0

WT
n 0 0



ν`+1

p`+1
b

p`+1
n

+


Mν` + hλ`app

1
h
φ`

1
h
ψn

`

 (2.104)

0 ≤ ρ`+1
n ⊥ p`+1

n ≥ 0 (2.105)

2.7.3 Planar 2 Bar Pendulum Attached to Block with Friction

This problem is identical to the previous “Planar 2 Bar Pendulum Attached to

Block” example, with the addition of a friction force between the block and surface.

We can skip right to the system dynamics.

2.7.3.1 System Dynamics

Assuming the two contacts are included in the active set every time step, the

MCP is size 21 and the following quantities appearing in it are:

M =


Mc 03×3 03×3

03×3 Ma 03×3

03×3 03×3 Mb

 WT
b =


WT

b1

... WT
b2

... 02×3

. . . . . . . . . . . . . . . .

02×3
... WT

b3

... WT
b4

 (2.106)
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Wn =



n̂1
... n̂2(

F
CR
)
Cr1 ⊗ n̂1

...
(
F
CR
)
Cr2 ⊗ n̂2

. . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

. . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1


λapp =



0

−mcg

0

0

−mag

0

0

−mbg

0



(2.107)

The new frictional quantities to appear are:

Wf =



t̂1 −t̂1
... t̂2 −t̂2(

F
CR
)
Cr1 ⊗ t̂1

(
F
CR
)
Cr1 ⊗−t̂1

...
(
F
CR
)
Cr2 ⊗ t̂2

(
F
CR
)
Cr2 ⊗−t̂2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1


(2.108)

E =


1 0

1 0

0 1

0 1

 U =

µ1 0

0 µ2

 (2.109)

where µi is the coefficient of friction at contact i.

Putting it all together, we can now formulate the mixed complementarity
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problem:

09×1

04×1

ρ`+1
n

ρ`+1
f

s`+1


=



−M Wb Wn Wf 0

WT
b 0 0 0 0

WT
n 0 0 0 0

WT
f 0 0 0 E

0 0 U −ET 0





ν`+1

p`+1
b

p`+1
n

p`+1
f

σ`+1


+



Mν` + hλapp

1
h
φ`

1
h
ψ`

n

04×1

02×1


(2.110)

0 ≤


ρ`+1

n

ρ`+1
f

s`+1

 ⊥


p`+1
n

p`+1
f

σ`+1

 ≥ 0 (2.111)

2.7.4 Planar 2 Bar Pendulum Attached to Block with Friction and Po-

sition Controlled Body

We extend the previous example with the introduction of a position controlled

body manipulating the block. For simplification, we assume the pusher is a par-

ticle and interacts with the block through a single frictional point contact. The

configuration of this system is unchanged as the new body is not force controlled.

Figure 2.10 illustrates the problem.
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Figure 2.10: A planar simple double pendulum with all joint axes parallel
to the Z-axis attached to a block on a surface. In addition,
there is a position controlled body manipulating the block.

2.7.4.1 System Dynamics

The following quantities from before still appear:

M =


Mc 03×3 03×3

03×3 Ma 03×3

03×3 03×3 Mb

 WT
b =


WT

b1

... WT
b2

... 02×3

. . . . . . . . . . . . . . . .

02×3
... WT

b3

... WT
b4

 λapp =



0

−mcg

0

0

−mag

0

0

−mbg

0


(2.112)

Assuming the 3 contacts are included in the active set every time step, the
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MCP is size 25, and the other quantities are:

Wn =



n̂1
... n̂2

... Cn̂3(
F
CR
)
Cr1 ⊗ n̂1

...
(
F
CR
)
Cr2 ⊗ n̂2

...
(
C
FR
)
F r3 ⊗ cn̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

... 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

... 03×1


(2.113)

The friction constraint wrench (for space constraints the rotation matrices

performing the frame transforms have been dropped):

Wf =



t̂1 −t̂1
... t̂2 −t̂2

... C t̂3 −C t̂3

r1 ⊗ t̂1 r1 ⊗−t̂1
... r2 ⊗ t̂2 r2 ⊗−t̂2

... Cr3 ⊗ C t̂3
Cr3 ⊗−C t̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1

... 03×1 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02×1 02×1
... 02×1 02×1

... 02×1 02×1


(2.114)

E =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


U =


µ1 0 0

0 µ2 0

0 0 µ3

 (2.115)

Since the position of the pusher is a time-dependent function f(t), we must

remember to include the partial derivative of that function in the b vector.

Putting it all together, we can now formulate the mixed complementarity
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problem:



09×1

04×1

ρ`+1
n

ρ`+1
f

s`+1


=



−M Wb Wn Wf 0

WT
b 0 0 0 0

WT
n 0 0 0 0

WT
f 0 0 0 E

0 0 U −ET 0





ν`+1

p`+1
b

p`+1
n

p`+1
f

σ`+1


+



Mν` + hλapp

1
h
φ`

1
h
ψ`

n +
∂ψ`

n

∂t
06×1

03×1


(2.116)

0 ≤


ρ`+1

n

ρ`+1
f

s`+1

 ⊥


p`+1
n

p`+1
f

σ`+1

 ≥ 0 (2.117)

2.7.5 Planar 2 Bar Pendulum Attached to Block with Friction, Position

Controlled Body, and Moving Floor

This example is identical to the previous example with the simple addition

of
∂Ψf

∂t
in the b vector. This term represents the lateral position change of the

frictional surface in one time step, i.e., people movers in airports.

b =



Mν` + hλapp

1
h
φ`

1
h
ψ`

n +
∂ψ`

n

∂t
∂Ψ`

f

∂t
03×1


(2.118)

2.7.6 Full Planar Model

We extend the previous example by replacing the bottom rod of the pen-

dulum with a spring and particle mass. Figure 2.11 illustrates the problem. For

this example, vectors r1 and r2 are constant in the blocks body frame C and vec-

tor r3 is most naturally represented in the fixed inertial frame. Similarly, vectors

n̂1, n̂2, n̂1, and n̂2 are constant in the fixed inertial frame, and vectors n̂3 and n̂3

are constant in the {C} frame.

Assuming the 3 contacts are included in the active set every time step, the
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Figure 2.11: A force controlled block is sitting on a conveyor belt with
a pendulum attached at its center of mass. At the other
end of the pendulum, a spring and particle are attached.
The block is interacted along its left edge with a position
controlled pusher.

MCP is size 22, and the quantities appearing in the matrix are presented next.

The mass matrices of the three force controlled bodies are:

Mc =


mc 0 0

0 mc 0

0 0 Ic

 Ma =


ma 0 0

0 ma 0

0 0 Ia

 Mb =

mb 0

0 mb

 (2.119)

resulting in a system mass matrix of

M =


Mc 03×3 03×2

03×3 Ma 03×2

02×3 02×3 Mb

 (2.120)
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Next, we must deal with the single bilateral constraint of the system, the

revolute joint at point O. From before, we know we must constrain the relative

velocity at point O between bodies C and A to be zero.

WT
b1 =

1 0

0 1

I2×2 0

01×2 1

 WT
b2 =

−1 0

0 −1

I2×2

(
F
AR
)
Aro

01×2 1

 Wb =


Wb1

Wb2

02×2


(2.121)

Now, the unilateral constraint wrench:

Wn =



n̂1
... n̂2

... Cn̂3(
F
CR
)
Cr1 ⊗ n̂1

...
(
F
CR
)
Cr2 ⊗ n̂2

...
(
C
FR
)
F r3 ⊗ Cn̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

... 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02×1
... 02×1

... 02×1


(2.122)

The friction constraint wrench (for space constraints the rotation matrices

performing the frame transforms have been dropped):

Wf =



t̂1 −t̂1
... t̂2 −t̂2

... C t̂3 −C t̂3

r1 ⊗ t̂1 r1 ⊗−t̂1
... r2 ⊗ t̂2 r2 ⊗−t̂2

... Cr3 ⊗ C t̂3
Cr3 ⊗−C t̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1

... 03×1 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02×1 02×1
... 02×1 02×1

... 02×1 02×1


(2.123)
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The other matrices required for Coulomb’s friction:

E =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


U =


µ1 0 0

0 µ2 0

0 0 µ3

 (2.124)

In this example, gravity is not the only external force acting on the system,

we also have the spring force and damping force acting on bodies A and B.

For the spring, sin(θ) and cos(θ) are functions of rod A’s endpoint (point P)

and the particle B’s position.

L =
√

(Bx − Px)2 + (By − Py)2 (2.125)

sin(θ) = −(Bx − Px)/L (2.126)

cos(θ) = −(Py −By)/L (2.127)

where L is the length of the spring. This allows us to construct the rotation matrix

from the springs frame {S} into the fixed world frame:

(
F
SR
)

=

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (2.128)

The force produced by the spring acts along the spring’s y-axis and is equal

to −K(L − L0), where L0 is the rest length of the spring and K is the spring

constant. This allows us to write down the spring force in the springs frame as: Sfs

= [0 −K(L − L0)]T. To compute the force of the spring on the particle, a simple

change of frame is all that is required: fs =
(
F
SR
)
Sfs.

For the pendulum, slightly more work is needed. We first compute the spring

force acting at point P, which we know must be opposite and equal the force acting

on the particle B, −fs. Now that we know the force acting at point P, we need to
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compute the wrench acting at A∗. Similar to contact forces, the wrench associated

with the spring Ws for body A is:

Ws =

 −fs(
F
AR
)
Ars ⊗−fs

 (2.129)

For the damping force, we need to first compute the relative velocity between

the particle B and the point P. The velocity of point P can be obtained from the

velocity twist of the pendulum:

vp = vA + ωA (rp)
∧ (2.130)

The damping force acting on the particle B therefore becomes:

fd = −C(vb − vp) (2.131)

and the force acting at point P is −fd (opposite and equal). For the body A, we

again have to transform the damping force acting at point P into the corresponding

wrench acting at A∗.

Wd =

 −fd

rs ⊗−fd

 (2.132)

We group all the external forces/wrenches into the applied wrench, λapp:

λapp =


gc

ga + Ws + Wd

gb + fs + fd

 (2.133)

The other elements of b are the constraint stabilization terms and the partial

derivative appearing from the position controlled body. Putting it all together, we
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can formulate the mixed linear complementarity problem:



08×1

02×1

ρ`+1
n

ρ`+1
f

s`+1


=



−M Wb Wn Wf 0

WT
b 0 0 0 0

WT
n 0 0 0 0

WT
f 0 0 0 E

0 0 U −ET 0





ν`+1

p`+1
b

p`+1
n

p`+1
f

σ`+1


+



Mν` + h(λapp)

1
h
φ`

1
h
ψn +

∂ψn

∂t
∂Ψf

∂t
03x1


(2.134)

0 ≤


ρ`+1

n

ρ`+1
f

s`+1

 ⊥


p`+1
n

p`+1
f

σ`+1

 ≥ 0 (2.135)



3. Alternative Time-Stepping Formulations

The time-stepping formulation presented in the previous chapter was based upon

the work in [110]. In this chapter, we also build upon this work developing new alter-

native time-stepping formulations. These subsequent formulations were constructed

for a variety of reasons, including accuracy, performance, and design. In section 3.2,

a new method is presented that correctly handles non-penetration constraints for

non-convex corners. In section 3.3, a 2.5D method is presented that adds surface

friction to a 2D body. This allows for an approximation of surface friction effects,

without the associated costs of modeling the entire 3D body. Section 3.4 presents a

time-stepping formulation for multi-body quasi-static systems, which despite being

narrower than the dynamic model, includes a large number of important tasks, such

as low-speed assembly, static grasping, and walking using tripods of support. Lastly,

section 3.5 presents a fully implicit time-stepping scheme, which we currently believe

is the most accurate time-stepping formulation available.

These alternative time-stepping methods are not mutually exclusive. For ex-

ample, in chapter 4 we present a simulation using a quasi-static 2.5D formulation.

It would also be possible for one to incorporate the non-convex formulation results

presented in section 3.2. However, not all combinations are possible. For exam-

ple, the fully implicit time-stepper in section 3.5 requires the body geometry to be

modeled as convex implicit functions, so the non-convex corner handling method in

section 3.2 is not applicable.

3.1 Existing Alternative Complementarity Formulations of

Dynamics

The time-stepping formulation presented in the previous chapter was based

upon the work in [110], but this was not the first complementarity based formulation

of dynamics. One of the first formulations of multi-rigid-body dynamics subject

to unilateral constraints incorporating complementarity theory was done by Per

Lötstedt [67, 68]. In these papers, Lötstedt used the instantaneous formulation of

60
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the dynamics and modeled the non-penetration constraint as a complementarity

problem. He proved that in the frictionless case one will get a unique solution from

the LCP. When he extended the formulation to incorporate Coulomb friction [69],

he modified the Coulomb model to be a relationship between the normal force of the

previous step and the friction forces of the current step. This was done to avoid the

solution existence and uniqueness issues associated with frictional contact problems

first noted by Painlevé [83]. In particular, Painlevé showed that there are systems

where no solution to the frictional forces exist, and systems where if a frictional

force is found, ν̇ may not be unique. There has been a great deal of research on

acceleration-level modeling of rigid bodies subject to Coulomb friction addressing the

Painlevé problem, including [73, 13, 47, 10, 14, 37, 48, 89, 113, 86, 46]. Baraff [10]

used the lack of solution guarantee to show and popularize that the acceleration

based LCP is NP hard. Trinkle et al. [113] provided the first complementarity

problem formulation for the three dimensional multi-rigid-body contact problem

with Coulomb friction, and Pang and Trinkle [86] provided existence and uniqueness

results under certain (limiting) assumptions.

A common resolution (though not without its own controversy, e.g. [25]) to

solution inconsistency of acceleration based rigid-body models involves the use of

time-stepping formulations based on impulses (integrals of the forces) with comple-

mentarity theory (e.g. [110, 106, 6]) or optimization conditions (e.g. [56, 74, 66, 2])

to resolve the contact state. In [109], Stewart provided the first convergence results

and rigorously proved solutions exist with velocity level formulations, overcoming

Painlevé-type problems. The seminal work of Stewart and Trinkle [110] has led to an

active area of research in complementarity based rigid-body time-stepping, includ-

ing: [5, 107, 97, 116, 115, 28, 4, 1, 64, 51, 39, 40, 92, 24, 60]. Anitescu and Potra [6]

were able to prove solution existence with a minor modification to the formulation.

Tzitzouris [116] was able to make a first order implicit time-stepping formulation,

but required a distance function between bodies and two levels of derivatives be

available in closed form. Anitescu [1] incorporated Newton’s restitution law into a

fixed step-size time-stepping framework. Potra et al. [92] replaced the first order

Euler step with a higher order trapezoidal method, but required an adaptive step
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size and needed to determine the time of impacts.

Anitescu and Hart [3] showed that even in simple situations, the complemen-

tarity problems may have a nonconvex solution set, and conclude that in general

velocity-based LCPs may be hard to solve. Time-stepping methods have also been

extended to other models, including quasi-rigid [101, 88, 102], quasi-static [87], and

elastic [11, 108, 54]. The remaining sections of this chapter present some of the new

time-stepping models we have developed, nonconvex nonpenetration constraints [36],

2.5D [18], quasi-static [112], and geometrically implicit [24, 23].

3.2 Modeling Nonconvex NonPenetration Constraints

As mentioned in the introduction, a common source of error in simulation

of multi-rigid-body systems caused by polyhedral models is the assumption that

non-penetration constraints can be accurately represented as a conjunction of linear

inequalities. This implicit assumption of local convexity introduces artifacts in the

results of the simulation, as shown in figure 3.1.

The complementarity time-stepping formulation derived in section 2.6 suffers

this problem. We are now going to look more carefully at the non-penetration

constraint in the original time-stepper, and how we can modify it to allow for a

non-convex constraint.

3.2.1 Non-Penetration Constraint

Given a point mass approaching a vertex with incident edges e1 and e2, the

non-penetration constraint (see section 2.4.2 for more details) can be written as the

following two complementarity conditions:

0 ≤ ψ1n ⊥ p1n ≥ 0 (3.1)

0 ≤ ψ2n ⊥ p2n ≥ 0 (3.2)

where ψin is the distance to the potential edge ei, pin is the non-penetration impulse

required to prevent inter-penetration of edge i.

This formulation accurately models convex corners, such as in figure 3.2a,
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(a) (b) (c)
Conjuction

(d) (e) (f)
Disjunction

Figure 3.1: Screenshots of simulating a block sliding over a hole. In both
examples there is a potential contact with the lower right
corner of the block and the diagonal edge of the right side
of the hole (3.1b, 3.1e). If the non-penetration constraint
is represented as a conjunction of linear inequalities, then
the diagonal edge on the right side of the hole is incorrectly
modeled as extending forever (3.1c). Using a disjunction, the
block correctly slides past the corner (3.1f).

e 1

e 2

ψ
1n

ψ
2n

object

Invalid Region
(a) Convex

e 2

e 1

ψ
1n

ψ
2n

Invalid Region

object

(b) Nonconvex

Figure 3.2: The convex feature on the left is correctly models as ψ1n ≥ 0
and ψ2n ≥ 0. The non-convex feature on the right is incor-
rectly modeled as a conjunction. The feature should be mod-
eled as a disjunction, ψ1n ≥ 0 or ψ2n ≥ 0.
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however fails to properly model the corner when it is non-convex, as shown in

figure 3.2b. Given two edges e1 and e2 of a non-convex corner, the gap constraint

should be modeled as,

0 ≤ ψ1n or ψ2n ≥ 0 (3.3)

and the non-penetration constraint is more properly modeled as,

p1n ≥ 0 ⇐⇒ (max {ψ1n, ψ2n} = 0) ∧ (ψ1n = 0) (3.4)

p2n ≥ 0 ⇐⇒ (max {ψ1n, ψ2n} = 0) ∧ (ψ2n = 0) (3.5)

Enforcing this constraint by use of complementarity is not trivial, and is still

an active area of research [82]. Presented now are the first results for modeling

this constraint, taken from an early tech report [36]. More details and alternative

formulations can be found in the tech report and more recent formulations.

Ignoring friction at the contact, artificial variables c1, c2, d, g1, g2, h1, h2 and

p are created. Additionally, a large positive constant γ is needed. The following

equations are now used to model equations (3.4) and (3.5):

0 ≤ c1 + ψ1n − 1 ⊥ c1 ≥ 0 (3.6)

0 ≤ c2 + ψ2n − 1 ⊥ c2 ≥ 0 (3.7)

0 ≤ g1 + g2 − 1 ⊥ d ≥ 0 (3.8)

0 ≤ c1 + d− γ ⊥ g1 ≥ 0 (3.9)

0 ≤ c2 + d− γ ⊥ g2 ≥ 0 (3.10)

0 ≤ h1 + ψ1n ⊥ h1 ≥ 0 (3.11)

0 ≤ h2 + ψ2n ⊥ h2 ≥ 0 (3.12)

0 ≤ d− γ + 1 ⊥ p ≥ 0 (3.13)

0 ≤ h1 + d− γ + 1 ⊥ p1n ≥ 0 (3.14)

0 ≤ h2 + d− γ + 1 ⊥ p2n ≥ 0 (3.15)
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Equations (3.6) and (3.7) constrain

c1 = |min{ψ1n, 1} − 1| c2 = |min{ψ2n, 1} − 1| (3.16)

Equations (3.11) and (3.12) constrain

h1 = |min{ψ1n, 0}| h2 = |min{ψ2n, 0}| (3.17)

Equations (3.8), (3.9) and (3.10) are designed to find the maximum value of ψ1n and

ψ2n.

As long as γ > max{c1, c2}, we will have d > 0 from Equations (3.6), (3.7),

(3.8) and (3.8). In general d ≥ max{γ − c1, γ − c2}. Because d > 0 the third

equation forces g1 +g2 = 1, and therefore g1 > 0 or g2 > 0. To make g1 or g2 greater

than 0 either d + c1 − γ = 0 or d + c2 − γ = 0. This fixes d to either γ − c1 or

γ − c2, which in turn implies a strict equality d = max{γ − c1, γ − c2}. We have

manipulated d to select the smaller of the c1 and c2 values, and therefore select the

maximum (least negative) of ψ1n and ψ1n. Relating d to ψ1n and ψ1n, we can say

d = min{max{a1, a2}, 1}+ γ − 1. Finally we have d− γ + 1 = min{max{a1, a2}, 1}.
In the degenerate case where c1 = c2 both g1 and g2 may be greater than 0, but this

does not change the relationship between d, ψ1n and ψ2n.

If d−γ+1 > 0 we have no contact, and if d−γ+1 = 0 we do have contact. In

equation (3.13) we have d−γ+1 ≥ 0, which enforces the non-penetration constraint.

Note that p in equation (3.13) is not used in any other equation, and has no effect

on the formulation. In equations (3.14) and (3.15), the normal force magnitude for

individual planes of the nonconvex constraint are calculated. For p1n to be greater

than 0, both d− γ+ 1 and h1 must be 0. This enforces the rule that a contact force

can only come from a plane that is in contact.

To make the formulation work, the constant value γ must be greater than

|min{a1, a2, 0}| to force d to be positive in equations (3.9) and (3.10). To be con-

servative γ can be set to the diameter of the scene, or the twice the distance the

fastest point can travel in the next time step.
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3.2.2 Future Work

The LCP formulation as shown here for a non-convex corner does not include a

frictional response. The incorporation of friction can be found in the tech report [36].

There are many problems with the presented formulation, it requires a parameter

that must be tuned, requires a large amount of complementarity constraints, and

was never implemented for 3D bodies. Ongoing work is being considered addressing

all of these issues [82].

3.3 2.5D Model

There are many planar manipulation and assembly tasks in which we need to

model surface friction between planar parts and a planar support surface. While

this surface friction results in planar forces, they are dependent on the normal forces

or the pressure distribution which contribute an out-of-plane component. The 2.5D

model models the out-of-plane normal forces which do not directly play a role in

determining the motion in the plane but do influence the frictional forces in the

plane. We use the well-known model due to Mason [71], which states the surface

pressure distribution can be modeled by an equivalent force distribution in a three-

point support.

1r

2r

3r

y

x

Figure 3.3: Surface friction distribution modeled with a three-point sup-
port tripod. The normal force at each contact point is solved
for, and Coulomb’s friction law is applied at each contact
point using the known normal force.

The surface contact for the part is modeled by three non-collinear points whose

triangle contains the center of mass of the part (figure 3.3). Coulomb’s friction law

is applied at each contact point, but a choice is available. This law may be used in
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its standard quadratic form, or linearized in order to obtain time step subproblems

that are LCPs instead of NCPs.

3.3.1 Surface Friction Normal Force

In order to apply Coulomb’s law at each of the three support points, we need

to first solve for the surface normal force at the contact point. The vectors from

the center of mass of the body to the three support points can be written as, r1 =

[x1, y1, 0], r2 = [x2, y2, 0], and r3 = [x3, y3, 0]. The z-components of the vectors are

all zero since these are 2D bodies that we are adding surface friction too.

Without loss of generality, the normal vector at each contact point, n̂, and the

two basis vectors in the tangent plane, t̂ and ô can be defined as:

n̂ =


0

0

1

 t̂ =


1

0

0

 0̂ =


0

1

0

 (3.18)

This allows us to formulate the surface friction contact wrenches,

Wns =



0 0 0

0 0 0

1 1 1

y1 y2 y3

−x1 −x2 −x3

0 0 0


Wts =



1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

−y1 −y2 −y3


Wos =



0 0 0

1 1 1

0 0 0

0 0 0

0 0 0

x1 x2 x3


(3.19)

The next step is to solve for the surface friction normal force, λns in the

Newton-Euler equations,

Mν̇ = Wnsλns + Wtsλts + Wosλos + λapp (3.20)

The three non-zero rows in Wns, correspond to rows of zeroes in Wts and
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Wos, so the equation simplifies to:

M̃


v̇z

ω̇x

ω̇y

 =


1 1 1

y1 y2 y3

−x1 −x2 −x3

λns +


−mg

0

0

 (3.21)

where M̃ is the mass matrix with the corresponding rows and columns removed and

−mg is the gravitation force. We can now solve for λns,
1 1 1

y1 y2 y3

−x1 −x2 −x3

λns = M̃


v̇z

ω̇x

ω̇y

−

−mg

0

0

 (3.22)

λns =


1 1 1

y1 y2 y3

−x1 −x2 −x3


−1M̃


v̇z

ω̇x

ω̇y

−

−mg

0

0


 (3.23)

Since we are adding the surface friction constraint to a 2D body, [v̇z ω̇x ω̇y]
T =

[0 0 0]T , and we can uniquely solve for λns as a function of the applied force,

λns =


1 1 1

y1 y2 y3

−x1 −x2 −x3


−1 

mg

0

0

 (3.24)

3.3.2 Nonlinear DCP Formulation

We can now extend the 2D analog of equation (2.71) to include surface friction

arriving at the nonlinear DCP 2.5D formulation:
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M(q)ν̇ = Wn(q)λn + Wt(q)λt + Wo(q)λo + λapp(q, t)

q̇ = ν

0 = Φ(q, t)

0 = (Usλns)◦(vt) + λts◦σs

0 = (Usλns)◦(vo) + λos◦σs

0 = (Uλn)◦(vt) + λt◦σ

0 = (Uλn)◦(vo) + λo◦σ

0 ≤ λn ⊥ ψn(q, t) ≥ 0

0 ≤ σs ⊥ (Usλns)◦(Usλns)− λts◦λts − λos◦λos≥0

0 ≤ σ ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0

(3.25)

where q = [x y θ]T , ν = [ẋ ẏ θ̇]T , Us ∈ R3×3 is the matrix of support point friction

coefficients, λns ∈ R3 is a known vector containing the support points’ normal forces,

and σs is the surface friction slip speed.

3.3.3 Linear DCP Formulation

The linearized model can be written in a form similar to that given in equa-

tion (2.72), after incorporating the additional elements corresponding to the tan-

gential surface frictions and normal friction force vector:

0

ρ`+1
n

ρ`+1
fs

ρ`+1
f

s`+1
s

s`+1


=



−M Wn Wfs Wf 0 0

WT
n 0 0 0 0 0

WT
fs 0 0 0 Es 0

WT
f 0 0 0 0 E

0 0 −ET
s 0 0 0

0 U 0 −ET 0 0





ν`+1

p`+1
n

p`+1
fs

p`+1
f

σ`+1
s

σ`+1


+



Mν` + hλapp

1
h
ψ`

n + ∂ψ`
n

∂t

0
∂Ψ`

f

∂t

hUsλns

0


(3.26)
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0 ≤



ρ`+1
n

ρ`+1
fs

ρ`+1
f

s`+1
s

s`+1


⊥



p`+1
n

p`+1
fs

p`+1
f

σ`+1
s

σ`+1


≥ 0 (3.27)

where q = [x y θ]T , ν = [ẋ ẏ θ̇]T , Wfs ∈ R3×3nd has nd directions for each surface

contact, Us ∈ R3×3 is the matrix of support point friction coefficients, λns ∈ R3

contains the support points’ normal impulses. and σs, pfs, and Es are the surface

friction support tripod contact analogs to σ, pf and E respectively.

3.4 Quasistatic Formulation

In quasistatic formulations, the sum of the external forces must equal zero.

This model change shows up in the left hand side of equation (2.35), where the term

M(q, t)ν̇ is replaced with 0:

0 = λvp(q,ν, t) + λapp(q, t) (3.28)

Pang, Trinkle, and Lo [87] studied the quasistatic planar motion, with a focus

on better understanding the quasistatic contact problem. Unlike the time stepper

formulation shown previously, they formulated the problem as an uncoupled com-

plementarity problem and used linear programming techniques to solve it.

Trinkle, Berard, and Pang [112] presented two quasistatic multi-rigid-body

models: one linear and the other nonlinear. Using these models they formulated

two semi-implicit complementarity problems, a mixed LCP and a mixed NCP re-

spectively. Using these models they were able to develop a theorem for solution

uniqueness for quasistatic systems. These results are now presented.

3.4.1 Instantaneous-time models

A quasistatic system must satisfy equilibrium at all times, therefore equa-

tion (3.28) is substituted into equation (2.71), arriving at the Instantaneous time



71

model:

0 = Wn(q)λn + Wt(q)λt + Wo(q)λo + λvp(q,ν, t) + λapp(q, t) (3.29)

q̇ = G(q)ν (3.30)

0 = Φ(q, t) (3.31)

0 = (Uλn)◦(vt) + λt◦σ (3.32)

0 = (Uλn)◦(vo) + λo◦σ (3.33)

0 ≤ λn ⊥ ψn(q, t) ≥ 0 (3.34)

0 ≤ σ ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0 (3.35)

3.4.2 Discrete-time models

In the following, two time-stepping schemes will be presented. The unknowns

for both are the configuration vector, contact forces, and sliding speeds at the end

of the time step.

Again, let t` and denote the time at which one has a solution and let t`+1 =

t` + h denote the time at which one would like an estimate of the solution. To

eliminate ν, q̇ can be approximated using a backward Euler formula as follows:

∆q = q`+1 − q` = G(q)ν`+1h (3.36)

Note that since ∆q is in the range of G (see equation (2.36)), the following useful

identity holds: ∆q = GGT∆q.

3.4.3 A mildly nonlinear model: Model-DQC

After substituting equation (3.36) into Model-IQC, and replacing all occur-

rences of the variables (q, λn, λt, λo, σ) with their values at the end of the time

step, (q`+1, λ`+1
n , λ`+1

t , λ`+1
o , σ`+1), all model equations are nonlinear in the un-

knowns.

To remove some of the nonlinearities from the time-stepper, let Wn, Wt, Wo,

G, λapp, and λvp be evaluated at q`. In addition, let the distance function vector
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be approximated by the linear terms in its Taylor series expansion:

0 ≤ λ`+1
n ⊥ WT

n GTq`+1 + bn ≥ 0 (3.37)

where bn = ψ`
n + ∂ψ`

n

∂t
h−WT

n GTq`. Now the only remaining nonlinearities are the

quadratic terms in Coulomb’s law. The result is a mildly nonlinear discrete-time

model, Model-DQC. For each time step, the NCP composed of equations (3.29,

3.37) and the following must be solved:

0 = (Uλn)◦(WT
t GTq + bt) + λt◦ σh (3.38)

0 = (Uλn)◦(WT
o GTq + bo) + λo◦ σh (3.39)

0 ≤ σ ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0 (3.40)

where the variables q, λn, λt, λo, and σ appearing in equations (3.38-3.40) are to

be evaluated at time t`+1, bt = ∂ψ`
t

∂t
h−WT

t GTq` and bo = ∂ψ`
o

∂t
h−WT

o GTq`.

Summary of Model-DQC:

For each time step, solve mixed NCP of size nq+4nc defined by equations (3.29,3.37-

3.40).

3.4.4 A linear model: Model-DLC

The other discrete-time model of interest, Model-DLC can be derived from

Model-ILC by the same procedure. The result is a mixed LCP defined as follows:
0

ρ`+1
n

ρ`+1
f

s

 = B


q`+1

λ`+1
n

λ`+1
f

σ`+1

+ b (3.41)

0 ≤


ρ`+1

n

ρ`+1
f

s

 ⊥

λ`+1

n

λ`+1
f

σ`+1

 ≥ 0 (3.42)
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where

B =


0 Wn Wf 0

WT
n GT 0 0 0

WT
f GT 0 0 E

0 U −ET 0

 , b =


λapp + λvp

bn

bf

0

 , (3.43)

bn is defined as above, and bf =
∂Ψ`

f

∂t
h−WT

f GTq`.

Summary of Model-DLC:

For each time step, solve mixed LCP of size nq + (2 + nd)nc defined by equa-

tions (3.41,3.42).

3.4.5 Uniqueness

The theorem presented here is the first known solution uniqueness result for

general quasistatic multibody systems with dry friction. It applies only to the

discrete-time models, Model-DQC and Model-DLC.

Before stating the result, the friction force components can be written as

the following functions of the normal force component and the relative tangential

displacement components ∆it = W T
it GTq`+1 + bit and ∆io = W T

ioGTq`+1 + bio:

λit = −µi λin
∆it√

∆2
it + ∆2

io

λio = −µi λin
∆io√

∆2
it + ∆2

io

(3.44)

where when ∆it = ∆io = 0, the fractions appearing in equation (3.44) are both equal

to 0/0, and are taken to be a suitable pair of scalars (α, β) such that α2 + β2 ≤ 1.

For given {µiλin}nc
i=1, consider the following convex, nondifferentiable optimiza-

tion problem in the variable q`+1:

min− λTappq
`+1 +

nc∑
i=1

µi λin

√
∆2
it + ∆2

io

s.t.: WT
n GTq`+1 + bn ≥ 0

(3.45)
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where recall that ∆it and ∆io are functions of q`+1. The physical interpretation of

this problem is that the displacement of the system is one that avoids penetration

while minimizing the work done against external and frictional forces. In other

words, the system is “lazy” and so moves no more than it absolutely must.

The following result describes the precise connection between the above opti-

mization problem (3.45) and the discrete-time model Model-DQC.

Theorem 1. If (q`+1,λn,λt,λ) solves Model-DQC then q`+1 is a globally optimal

solution to (3.45) corresponding to λn. Conversely, if q`+1 is a globally optimal

solution to (3.45) for a given λn and if λn is equal to an optimal Karush-Kuhn-

Tucker (KKT) multiplier of the constraint in (3.45), then defining (λt,λo) by (3.44),

the tuple (q`+1,λn,λt,λo) solves Model-DQC.

A question relevant to the design of fixed-point time stepping schemes is

whether or not the convex optimization problem (3.45) has a unique solution, for

fixed {µiλin}nc
i=1. Let (q`+1,λn,λt,λo), solve Model-DQC. Denote by dq a small

change in q`+1, and define the index sets:

I ≡ { i : ψin = 0 < λin } (3.46)

J ≡ { i : ψin = 0 = λin }. (3.47)

Proposition 1. Corresponding to the solution (q`+1,λn,λt,λo) of Model-DQC,

q`+1 is the unique solution of (3.45) if and only if the following implication holds:

W T
inG

Tdq ≥ 0, i ∈ I ∪ J

W T
it G

Tdq = 0, i ∈ I

W T
ioG

Tdq = 0, i ∈ I

(λapp)Tdq ≥ 0


⇒ dq = 0. (3.48)

Finally, consider an alternative model where the quadratic friction cone at

each contact i is replaced by a four-sided linearized cone:

{ (λit, λio ) : max(|λit|, |λio|) ≤ µi λin }. (3.49)
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In this case, instead of (3.44), we have

λit = −µiλin
∆it

|∆it|

λio = −µiλin
∆io

|∆io|
.

(3.50)

Moreover, a result similar to Theorem 1 holds with the optimization problem (3.45)

replaced by the following linear program:

min− λTappq
`+1 +

nc∑
i=1

µi λin ( |∆it |+ |∆io |)

s.t.: WT
n GTq`+1 + bn ≥ 0

(3.51)

where again recall that ∆it and ∆io are functions of q`+1.

3.4.6 Example: Fence-Particle Problem

Consider the problem of manipulating a particle (shown as a finite disc) of

mass m initially at rest on a horizontal plane (the (x, y)-plane in Figure 3.4). The

configuration of this system is q = [xp yp zp]T , where zp is the height of the particle

above the plane (of the page). The wall on the right is parallel to the (y, z)-plane

(perpendicular to the plane of the page) and of infinite extent. The fence is parallel to

the wall, of infinite extent, and can translate in the x- and y-directions, but cannot

translate in the z-direction or rotate.8 The vector of noncontact and noninertial

forces λapp = [0 0 − mg]T is the gravitational force which acts in the negative

z-direction.

The three nonpenetration constraints, ψn(q, t) = [ψ1n(q) ψ2n(q, t) ψ3n(q)]T

are written as:

ψ1n = 1− xp ≥ 0 (3.52)

ψ2n = xp − xfence(t) ≥ 0 (3.53)

ψ3n = zp ≥ 0. (3.54)

8The latter constraint is to simplify the problem making the particle remain within the (x, y)-
plane.
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Figure 3.4: Schematic of fence-particle system.

The corresponding Lagrange multipliers are the normal components of the contact

forces, λn(q, t) = [λ1n λ2n λ3n]T . Even though as shown, the particle is not in

contact with the fence or wall on the right, the components of the corresponding

contact forces are shown.9 The possible contact force components between the

particle and the plane are not shown.

In this example, solution uniqueness will be explored for two different fric-

tion laws for the contact between the particle and the (y, z)-plane: no friction and

quadratic friction. An interesting point, is that for dynamic systems, the absence of

friction guarantees solution existence and uniqueness of the predicted motion (not

necessarily uniqueness of the contact forces) and the inclusion of friction leads to

motion nonuniqueness. In the quasistatic system studied here, the reverse is true.

For the case of linearized friction, the quadratic cone will be approximated by a

four-sided friction pyramid (see Figure 3.5). The various friction direction vectors

at the three potential contacts imply the following definitions of the local tangential

9Since translation in the z-direction is not possible in this problem, friction forces can act only
in the plane of motion of the particle. This is why there are only two friction force directions for
contacts 1 and 2.
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Figure 3.5: Friction direction vectors between the particle and the (x, y)-
plane.

displacement functions:

(ψ1f)1 = −yp (3.55)

(ψ1f)2 = yp (3.56)

(ψ2f)1 = yp − yfence(t) (3.57)

(ψ2f)2 = −yp + yfence(t) (3.58)

ψ3t = (ψ3f)1 = xp (3.59)

ψ3o = (ψ3f)2 = yp (3.60)

(ψ3f)3 = −xp (3.61)

(ψ3f)4 = −yp. (3.62)

where yfence(t) is the vertical position of the fence.
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The various submatrices appearing in the matrix B are:

Wn =


−1 1 0

0 0 0

0 0 1

 Wf =


0 0 0 0 1 0 −1 0

−1 1 1 −1 0 1 0 −1

0 0 0 0 0 0 0 0

 (3.63)

U =


µ1 0 0

0 µ2 0

0 0 µ3

 E =


1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 1 1

 (3.64)

Also, since the particle is a point mass, the matrix G is simply the identity matrix

of size 3.

Other matrices for the nonlinear problem are

Wt =


0 0 1

−1 1 0

0 0 0

 Wo =


0 0 0

0 0 1

1 1 0

 (3.65)

The time-dependent functions needed to define the vectors bn, bt, bo, and bf

were chosen as:

xfence(t) = 0.5 + 0.4 sin(t) (3.66)

yfence(t) = t (3.67)

With these choices, the fence translates in the y direction while oscillating in the

x-direction without ever hitting the wall.

3.4.6.1 Results

Various values of the problem data were chosen to illustrate the theorems given

in section 3.4.5. One common aspect of these problems is that the only forces that

can act in the z-direction are the gravitational force and the normal component

of the contact force between the particle and the (x, y)-plane. This implies that

λ3n = mg > 0 and ψ3n = 0.
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Results: Model-DLC, no friction As stated earlier, the frictionless example of

Model-DLC has many solutions. Looking back at Proposition 1, the 2nd and 3rd

rows of implication (3.48) are vacuous in the absence of friction. It is the removal

of these equalities from the implication that allow the construction of a dq 6= 0

satisfying the two remaining inequalities, breaking the implication. To do this,

assume a solution of the mixed LCP with contact between the particle and the

(x, y)-plane, but not with the wall or fence. In this case, we have W T
in = [0 0 1] and

λTapp = [0 0 −mg]. Let dq = [dx dy dz]T . The inequalities in this stripped down

version of implication (3.48) yield dz = 0, but dx and dy are unconstrained. Since

there exists a dq 6= 0 satisfying the left hand side of the implication, the implication

does not hold. Therefore, by applying Proposition 1, the solution of q`+1 Model-

DLC is not unique. In this particular case, the possible q`+1 solving Model-DLC

are all those for which the particle remains in contact with the (x, y)-plane, and

between the wall and fence. This conclusion was observed in practice. Specifically,

the solution obtained was dependent on the initial guess.

Results: Model-DQC From the frictionless case, we saw how the stripped down

version of implication (3.48) was only capable of constraining the z-component of

dq to 0. Now with friction present, we do not lose any rows of the implication, and

we will see how the implication holds true for all dq.

Again, consider a solution for the system when the particle is not touching

the fence or wall and the quadratic friction law is in effect at the contact with the

(x, y)-plane. In this case, the matrices Wt and Wo are given as follows:

Wt =


1

0

0

 Wo =


0

1

0

 , (3.68)

and Wn and λapp are as in the frictionless case.

Again, let dq = [dx dy dz]T . It is easily seen how the left hand side of the

implication now forces dx, dy, and dz to all be 0. Since the implication holds, by

Theorem 1 all q`+1 are unique. In this case, if over the course of a time step the
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fence will not reach the particle, the particle will not move.

Now, consider a solution in which the particle is in contact with the fence. In

this case, the matrices Wt and Wo gain rows, but do not change the conclusion -

the motion of the particle is unique.

3.5 Geometrically Implicit Formulation

This section presents our work [24, 23] on developing a geometrically implicit

optimization-based time-stepper for dynamic simulation. State-of-the-art time step-

pers [110, 102, 66] use geometric information obtained from a collision detection al-

gorithm at the current time, and the state of the system at the end of the time step

is computed (by solving a dynamics time step subproblem) without modifying this

information. Thus, state-of-the-art time-steppers can be viewed as explicit meth-

ods with respect to geometric information. We developed the first time-stepping

method that is implicit in the geometric information (when the distance function is

not available in closed form) by incorporating body geometry in the dynamic time-

stepping subproblem. In other words, our formulation solves the collision detection

and dynamic stepping problem in the same time-step, which allows us to satisfy

contact constraints at the end of the time step. This allows us to side-step the

unsolved problem of identifying a relevant set of potential contacts [7, 60].

To illustrate the effects of geometric approximation, consider the simple planar

problem of a uniform disc rolling on a horizontal support surface. For this problem,

the exact solution is known, i.e., the disc will roll at constant speed ad infinitum.

However, when the disc is approximated by a uniform regular polygon, energy is lost

a) due to collisions between the vertices and the support surface, b) due to contact

sliding that is resisted by friction and c) due to artificial impulses generated by the

approximate distance function that is to be satisfied at the end of the time-step.

We simulated this example in dVC [18] using the Stewart-Trinkle time-stepping

algorithm [110]. The parametric plots in Figure 3.6 show the reduction of kinetic

energy over time caused by the accumulation of these effects. The top plot shows

that increasing the number of edges, with the step-size fixed, decreases the energy

loss; the energy loss approaches a limit determined by the size of the time-step. The
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bottom plot shows reducing energy loss with decreasing step size, with the number

of vertices fixed at 1000. However, even with the decrease in time-step an energy

loss limit is reached. These plots make it clear that the discretization of geometry

and linearization of the distance function lead to the artifact of loss in energy in the

simulations.
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(a) As the number of edges of the “rolling”
polygon increases, the energy loss decreases.
The computed value obtained by our time-
stepper using an implicit surface description
of the disc is the horizontal line at the top.
The time step used is 0.01 seconds.
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decreases with decreasing step size, up to a
limit. In this case, the limit is approximately
0.001 seconds (the plots for 0.001, 0.0005,
and 0.0001 are indistinguishable).

Figure 3.6: For a disc rolling on a surface, plots of the reduction of ki-
netic energy over time caused by approximating the disc as
a uniform regular polygon.

This section presents a highly accurate geometrically implicit time-stepping

method for convex objects described as an intersection of implicit surfaces. The

resulting subproblem at each time-step will be a mixed nonlinear complementarity

problem and we call our time-stepping scheme a geometrically implicit time-stepping

scheme. We assume the objects to be convex objects described as an intersection of

implicit surfaces. We first present the method for rigid bodies and then extend it

to locally compliant or quasi-rigid bodies (where each body consists of a rigid core

surrounded by a thin compliant shell [100, 101, 102, 88]). This method also takes

into consideration other important nonlinear elements such as quadratic Coulomb

friction. This method will provide a baseline for understanding and quantifying

the errors incurred when using a geometrically explicit method and when making
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various linearizing approximations. Our ultimate goal is to develop techniques for

automatically selecting the appropriate method for a given application, and to guide

method switching, step size adjustment, and model approximations on the fly.

3.5.1 Contact Constraint for Rigid Bodies

In this section we rewrite the contact condition (Equation (2.45)) as a com-

plementarity condition in the work space, combine it with an optimization problem

to find the closest points, and prove that the resultant system of equations ensures

that the contact constraints are satisfied. Let us consider the ith contact. For ease

of exposition, we first present the case where each object is a convex object de-

scribed by a single implicit surface. A more general formulation where each object

is described by an intersection of implicit surfaces is given in section 3.5.1.3.

3.5.1.1 Objects described by a single convex function

Let the two objects be defined by convex functions f(ξ1) ≤ 0 and g(ξ2) ≤ 0

respectively, where ξ1 and ξ2 are the coordinates of points in the two objects. Let a1

and a2 be the closest points on the two objects. The equation of an implicit surface

has the property that for any point x, the point lies inside the object for f(x) < 0,

on the object surface for f(x) = 0, and outside the object for f(x) > 0. Thus, we

can define the gap function in the work space as either f(a2) or g(a1) and write the

complementarity conditions as either one of the following two conditions:

0 ≤ λin ⊥ f(a2) ≥ 0

0 ≤ λin ⊥ g(a1) ≥ 0
(3.69)

where a1 and a2 are given by a solution to the following minimization problem:

(a1, a2) = arg min
ξ1,ξ2

{
1

2
‖ξ1 − ξ2‖2 : f(ξ1) ≤ 0, g(ξ2) ≤ 0

}
. (3.70)

The Karush-Kuhn-Tucker (KKT) optimality conditions of Equation (3.70) that the

solutions a1 and a2 must satisfy are given by the following system of algebraic
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equations:

a1 − a2 = −l̂1∇f(a1)

a1 − a2 = l̂2∇g(a2)

f(a1) + s1 = 0

g(a2) + s2 = 0

0 ≤ l̂1 ⊥ s1 ≥ 0

0 ≤ l̂2 ⊥ s2 ≥ 0

(3.71)

where l̂1 and l̂2 are the Lagrange multipliers and s1 and s2 are the slack variables.

After eliminating the slack variables, the system of equations (3.71) can be rewritten

as the following equivalent system:

a1 − a2 = −l̂1∇f(a1) (3.72)

l̂1∇f(a1) = −l̂2∇g(a2) (3.73)

0 ≤ l̂1 ⊥ −f(a1) ≥ 0 (3.74)

0 ≤ l̂2 ⊥ −g(a2) ≥ 0. (3.75)

The geometric meaning of equations (3.72) and (3.73) is that the normals to the

two surfaces at their closest points are parallel to the line joining the closest points.

The solution to the system of equations (3.72) to (3.75) gives the closest point when

the two objects are separate. However, when a1 = a2, both Lagrange multipliers

are forced to become 0 (since both |∇f(a1)| > 0 and |∇g(a2)| > 0) and the normals

to the two surfaces at the contact point are no longer constrained to be parallel.

Because of this degeneracy, intersection points of two interpenetrating objects satisfy

equations (3.72)–(3.75) and the complementarity conditions in equation (3.69) (see

figure 3.7). Thus, as written, equations (3.72)–(3.75) and (3.69) do not guarantee

non-penetration. We want to form a system of equations that is equivalent to the

KKT conditions (equations (3.72)–(3.75)) when the distance between the objects is

non-zero but only gives the touching solution when the distance is zero (middle case

in figure 3.7 with parallel surface normals).
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f(x) <= 0

g(x) <= 0

f(x) <= 0

f(x) <= 0

g(x) <= 0
g(x) <= 0

Figure 3.7: Three Contact cases: (left) objects are separate, (middle)
objects are touching, (right) objects are intersecting.

Proposition 1. Equations (3.76)–(3.79) are equivalent to the KKT conditions when

the distance between the objects is non-zero. Moreover, when combined with either

complementarity condition in equation (3.80), it gives only the touching solution

when the distance between the objects is zero.

a1 − a2 = −l1∇f(a1) (3.76)

∇f(a1) = −l2∇g(a2) (3.77)

0 ≤ l1 ⊥ −f(a1) ≥ 0 (3.78)

0 ≤ l2 ⊥ −g(a2) ≥ 0 (3.79)

0 ≤ λin ⊥ f(a2) ≥ 0 (3.80)

Proof of Proposition 1. Let us first consider the case when the distance between the

objects is greater than zero. In this case a1 6= a2. Since the gradient vectors cannot

be zero and l̂1, l̂2 in equation (3.74), (3.75) are constrained to be non-negative, l̂1, l̂2

are strictly positive (or non-zero) in this case (from equations (3.72) and (3.73)).

Therefore equation (3.73) can be written as ∇f(a1) = − l̂2
l̂1
∇g(a2). Using l1 = l̂1 and

l2 = l̂2
l̂1

, the equations (3.72) to (3.74) can be written as equations (3.76) to (3.78).

Since l̂1 > 0 we can rewrite the complementarity condition in equation (3.75) as

l̂2(−g(a2)) = 0, l̂2 ≥ 0, −g(a2) ≥ 0

⇔ l̂2

l̂1
(−g(a2)) = 0

l̂2

l̂1
≥ 0, −g(a2) ≥ 0

⇔ l2(−g(a2)) = 0 l2 ≥ 0, −g(a2) ≥ 0

(3.81)

Thus equations (3.76) to (3.79) are equivalent to equations (3.72) to (3.75) when
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the distance between the objects is greater than zero.

When the distance between the objects is equal to zero, a1 = a2. Thus l1 = 0

from equation (3.76) which implies f(a1) ≤ 0 from equation (3.78). Equation (3.77)

implies that l2 > 0 and that gives g(a2) = 0 from equation (3.79). Thus the

system (3.76) to (3.79) gives solution points that lie on the surface of the object

defined by function g and that lie inside or on the surface of the object defined

by function f with the gradients of the functions defining the surfaces in opposite

directions at the common point. However, equation (3.80) implies that the point

a2 cannot lie within the defined by function f . Hence the only possible solution is

that a1 = a2 with the normals to the two surfaces at the solution point parallel.

This disallows the interpenetrating case, and we are left with only the touching

solution.

Proposition 2. Equations (3.76) to (3.80) together represent the contact con-

straints, i.e., the two objects will satisfy the contact constraints at the end of each

time step if and only if equations (3.76) to (3.80) hold together.

Proof. As discussed above.

3.5.1.2 New Discrete Time Model

We can now rewrite equation (2.77) as a mixed NCP for the geometrically-

implicit time-stepper. The vector of unknowns, z, can be partitioned into z = [u, v]

where u = [ν, a1, a2, pt, po, pr] and v = [l, pn, σ]. The equality constraints in

the mixed NCP are:

0 = −Mν`+1 + Mν` + W`+1
n p`+1

n + W`+1
t p`+1

t + W`+1
o p`+1

o + W`+1
r p`+1

r

+ p`app + p`vp

0 = (a`+1
1 − a`+1

2 ) + l1∇f(a`+1
1 )

0 = ∇f(a`+1
1 ) + l2∇g(a`+1

2 )

0 = E2
tUp`+1

n ◦ (WT
t )`+1ν`+1 + p`+1

t ◦ σ`+1

0 = E2
oUp`+1

n ◦ (WT
o )`+1ν`+1 + p`+1

o ◦ σ`+1

0 = E2
rUp`+1

n ◦ (WT
r )`+1ν`+1 + p`+1

r ◦ σ`+1.

(3.82)
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The complementarity constraints on v are:

0 ≤


l1

l2

p`+1
n

σ`+1

 ⊥

f(a`+1

1 )

g(a`+1
2 )

f(a`+1
2 )

ζ

 ≥ 0 (3.83)

where

ζ = Up`+1
n ◦Up`+1

n −
(
E2

t

)−1 (
p`+1

t ◦ p`+1
t

)
−
(
E2

o

)−1 (
p`+1

o ◦ p`+1
o

)
−
(
E2

r

)−1 (
p`+1

r ◦ p`+1
r

)
.

In the above formulation, we see u ∈ R6nb+9nc , v ∈ R2nc , the vector function

of equality constraints maps [u,v] to R6nb+9nc and the vector function of comple-

mentarity constraints maps [u,v] to R2nc where nb and nc are the number of bodies

and number of contacts respectively. If using convex bodies only, the upper bound

on the number of contacts can be determined directly from the number of bodies,

nc =
∑nb−1

i=1 i.

3.5.1.3 Objects described by intersections of convex functions

We present here the contact conditions for the general case where each convex

object is defined as an intersection of convex inequalities. Let fj(ξ1) ≤ 0, j =

1, . . . ,m, gj(ξ2) ≤ 0, j = m + 1, . . . , n, be convex functions representing the two

convex objects. Since the closest point is outside the object if it is outside at least

one of the intersecting surfaces, the complementarity conditions for nonpenetration

can be written as either one of the following two sets of conditions:

0 ≤ λin ⊥ max{fj(a2)} ≥ 0 j = 1, . . .m

0 ≤ λin ⊥ max{gj(a1)} ≥ 0 j = m+ 1, . . . n
(3.84)



87

where a1 and a2 are the closest points on the two bodies and are given by the KKT

conditions

a1 − a2 = −
m∑
i=1

l̂i∇fi(a1)

a1 − a2 =
n∑

j=m+1

l̂j∇gj(a2)

0 ≤ l̂i ⊥ −fi(a1) ≥ 0

0 ≤ l̂j ⊥ −gj(a2) ≥ 0

(3.85)

At the optimal solution only some of the constraints are active. Let I be the index

set of active constraints. Thus l̂k = 0, if k /∈ I and the KKT optimality conditions

can be written as the following set of nonlinear equations:

a1 − a2 = −
∑

i∈I∩{i}

l̂i∇fi(a1)

∑
i∈I∩{i}

l̂i∇fi(a1) = −
∑

j∈I∩{j}

l̂j∇gj(a2)

0 ≤ l̂i ⊥ −fi(a1 ≥ 0

0 ≤ l̂j ⊥ −gj(a2) ≥ 0

(3.86)

Equations (3.84) and (3.86) together represent the contact constraints as long as

a1 6= a2. Using arguments similar to the single surface case in Section IV we can see

that it is not possible to distinguish between touching points and intersecting points

using the above formulation. In this case also, we can rewrite Equation (3.86)

suitably by dividing throughout by one of the non-zero Lagrange multipliers to

eliminate the intersection point solutions.

a1 − a2 = −(∇fk1(a1) +
∑

k∈{I\k1}∩{i}

lk∇fk(a1))

∇fk1(a1)+
∑

k∈{I\k1}∩{i}

lk∇fk(a1) = −
∑

k∈I∩{j}

lk∇gk(a2)

0 ≤ l̂i ⊥ −fi(a1 ≥ 0

0 ≤ l̂j ⊥ −gj(a2) ≥ 0

(3.87)
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Proposition 3. Equation (3.84) and (3.87) together represent the nonpenetration

constraints, i.e., the two objects will satisfy the contact constraints at the end of

each time step if and only if Equation (3.84) and (3.87) hold together.

3.5.2 Contact Constraints for Compliant Bodies

In this section we describe the 3D linear viscoelastic model of contact [63]

and modify our contact constraints to include the deflections at the contact. We

incorporate this model in our time-stepping scheme and present the mixed NCP

problem that we are solving at each time step. We extend the Kelvin-Voigt model

with the physically motivated observation that the deformations in the normal di-

rection are bounded by some maximum value. For example, a human finger has a

thin compliant layer of muscle and tissue surrounding the rigid core (bone). The

application of a force on the finger results in a deformation of the thin compliant

layer until the rigid core is reached, at which point the non-penetration response is

rigid. Therefore, our model allows for a maximum possible deflection, beyond which

the contact behaves as a rigid body contact. The linear model can be replaced by a

nonlinear model but this comes at the cost of more unknown modeling parameters

to be determined experimentally. For simplicity of exposition, we consider only one

of the objects to be flexible at each contact. The general formulation where both

the bodies are flexible will contain the additional constraint that the contact forces

acting on both the bodies have to be equal. For each contact i, the normal impact

force λin is the sum of two components:

λin = λinr + λins (3.88)

where λins is the component of the force that is obtained from the deformation of the

spring and λinr is the component from impact with the rigid core. The tangential

force at each contact, λif = [λit, λio] is also given by a linear spring-damper model.

However, we do not have a bound on the maximum displacement in the tangential

direction. Concatenating all the individual force components into vectors allows us

to write for each contact (we drop subscript i for legibility), λ = Kδ + Cδ̇, where

λ = [λns,λt,λo] and δ = [δn, δt, δo] are 3 × 1 column vectors with δn, δt, δo being
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the normal and tangential deflections respectively. The matrices K, C are stiffness

and damping matrices given by

K =


Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo

 C =


Cnn Cnt Cno

Ctn Ctt Cto

Con Cot Coo


For systems with multiple contact, the contact forces λ, and body deformations δ

become concatenations of nc subvectors, where nc is the number of contacts. The

stiffness and damping matrices are block diagonal matrices of size 3nc × 3nc, where

each diagonal block of size 3× 3 represent one contact.

3.5.2.1 Objects described by a single convex function

When we consider contact compliance the contact constraints in Section 3

need to be modified to take into account the deflection δ. We denote the maximum

normal deflection by δo
n > 0 and assume that it will be determined experimentally.

Figure (3.8) shows two objects in contact with each other. The bold line shows

the deformed shapes of the two objects. The point of contact is the point where

the virtual objects shown by dotted lines touch. The deflections of the two objects

along the normal at the contact point are δn1 and δn2 respectively. In the subsequent

discussion, we will assume δn1 = 0 for simplicity and drop the subscript 2 from δn2.

Therefore, the constraints for the closest points are given by

a1 − a2 = −l1∇f(a1)

∇f(a1) = −l2∇g(a2)

0 ≤ l1 ⊥ −f(a1) ≥ 0

0 ≤ l2 ⊥ −(g(a2) + δ̄n) ≥ 0

(3.89)

where δ̄n is the algebraic distance. However, the normal contact force is given in

terms of the Euclidean deflection. To obtain the Euclidean deflection from this

algebraic deflection we note that the Euclidean deflection is the distance between

the point a2 and the point where the normal to g(ξ2) + δn2 = 0 at a2 intersects
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g(ξ2) = 0. From the above argument it can be seen that

g

(
a2 + δn

∇g(a2)

‖∇g(a2)‖

)
= 0 (3.90)

The complementarity conditions in Equation (3.69) thus becomes:

0 ≤ λns ⊥ ψ(a1, a2) + δ̄n ≥ 0

0 ≤ λnr ⊥ δo
n − δn ≥ 0

(3.91)

where ψ(a1, a2) = f(a2) or g(a1) for implicit surfaces. When the two bodies are not

f(a1) = 0

g(a2) = 0

g(a2) +

f(a1) +

a1= a 2

 = 0

 = 0δn1

δn2

δn2δn1

Figure 3.8: Schematic representation of the deflection at contact. The
contact is where the dotted curves touch.

in contact the right hand side of both the complementarity constraints are positive

and hence we do not have any contact force. The above system of equations are to

be written for each of the contacting bodies.

This formulation ensures that we satisfy the contact constraints at the end of

the time step taking into consideration the possibility of the deflection of the body.

It does not require the computation of penetration depth for obtaining the deflection

as required in [102]. It ensures that we get a collision response in a fixed time-step

scheme.

We can now formulate the mixed NCP for the geometrically-implicit lumped

compliant contact time-stepper. The vector of unknowns z can be partitioned into
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z = [u, v] where

u = [ν, a1, a2, δ̄n, δn, δt, δo, pt, po, pr]

v = [l, pns, pnr, σ].

The equality constraints in the mixed NCP are:

0 = −Mν`+1 + Mν` + W`+1
n p`+1

n + W`+1
t p`+1

t + W`+1
o p`+1

o + W`+1
r p`+1

r

+ p`app + p`vp

0 = p`+1 −
(
hKδ`+1 + C(δ`+1 − δ`)

)
0 = (a`+1

1 − a`+1
2 ) + l1∇f(a`+1

1 )

0 = ∇f(a`+1
1 ) + l2∇g(a`+1

2 )

0 = g(a`+1
2 + δ`+1

n

∇g(a`+1
2 )

‖∇g(a`+1
2 )‖

)

0 = E2
tUp`+1

n ◦ (WT
t )`+1ν`+1 + p`+1

t ◦ σ`+1

0 = E2
oUp`+1

n ◦ (WT
o )`+1ν`+1 + p`+1

o ◦ σ`+1

0 = E2
rUp`+1

n ◦ (WT
r )`+1ν`+1 + p`+1

r ◦ σ`+1

(3.92)

where p`+1 = [p`+1
n p`+1

t p`+1
o ]T , p`+1

n = p`+1
ns + p`+1

nr and δ`+1 = [δ`+1
n δ`+1

t δ`+1
o ]T .

The complementarity constraints on v are:

0 ≤



l1

l2

p`+1
ns

p`+1
nr

σ`+1


⊥



−f(a`+1
1 )

−(g(a`+1
2 ) + δ̄

`+1
n )

ψ(a`+1
1 , a`+1

2 ) + δ̄
`+1
n

δo
n − δ`+1

n

ζ


≥ 0 (3.93)

where

ζ = Up`+1
n ◦Up`+1

n −
(
E2

t

)−1 (
p`+1

t ◦ p`+1
t

)
−
(
E2

o

)−1 (
p`+1

o ◦ p`+1
o

)
−
(
E2

r

)−1 (
p`+1

r ◦ p`+1
r

)
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In the above formulation, we see u ∈ R6nb+13nc , v ∈ R3nc , the vector function

of equality constraints maps [u, v] to R6nb+13nc and the vector function of comple-

mentarity constraints maps [u, v] to R3nc where nb and nc are the number of bodies

and number of contacts respectively. If using convex bodies only, the number of

contacts can be determined directly from the number of bodies, nc =
∑nb

i=1 i.

3.5.2.2 Objects described by intersections of convex functions

Using the results obtained in Section 3.5.1.3 and the previous section, we can

now formulate the contact constraints for quasi-rigid or locally compliant bodies

where each body is represented as an intersection of convex implicit surfaces. In this

case the complementarity conditions for nonpenetration can be written as either one

of the following two sets of conditions:

0 ≤ λin ⊥ max{fj(a2) + δ̄jn} ≥ 0 j = 1, . . .m

0 ≤ λin ⊥ max{gj(a1) + δ̄jn} ≥ 0 j = m+ 1, . . . n
(3.94)

Moreover, the closest points on the two objects are given by

a1 − a2 = −(∇fk1(a1) +
∑

k∈{I\k1}∩{i}

lk∇fk(a1))

∇fk1(a1)+
∑

k∈{I\k1}∩{i}

lk∇fk(a1) = −
∑

k∈{I\k2}∩{j}

lk∇gk(a2)

0 ≤ li ⊥ −fi(a1) ≥ 0

0 ≤ lj − (gj(a2) + δ̄jn) = 0

(3.95)

which is a modification of Equation (3.87) and the notation is identical to the dis-

cussion in Section 3.5.1.3. To determine the actual deflection from the algebraic

distance, we need to assume that the normal at the point of contact is well defined.

Assuming this to be true, we can then obtain the deflection using Equation (3.90)

and the forces on the two bodies can be obtained using the appropriate constitutive

laws.
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3.5.3 Illustrative Examples

In this section we present examples to validate our technique against known

analytical results and previous approaches. The first example is for rigid bodies

and is the same example of a disc rolling without slip on a plane that we studied

in Section 3.5. The seconds example consists of a small sphere rolling in contact

with two larger spheres, and validates our results against previous simulations of

this system. The third example is for quasi-rigid bodies and consists of a unit

disc falling on a half-plane with frictionless contact. This example gives a simple

validation of our method. The final example is to repeat, in simulation, 100,800

grasping experiments done by Brost and Christensen in a laboratory at Sandia

National Laboratories over a period of weeks, with considerable technician support

and dedicated robotics equipment [20].

3.5.3.1 Example 1: Disc on a Plane

In this example we revisit the unit disc example from Section 3.5. For illus-

trative purposes, we explain the formulation of the full dynamic model in detail.

The normal axis of the contact frame n̂ = [0, 1]T always points in the inertial y-

axis direction and tangential axis t̂ = [1, 0]T always coincides with the x-direction.

The mass matrix, M is constant and the only force acting on the body is due to

gravity. The equation of the disc is given by f1(x, y) = (x − qx)2 + (y − qy)2 − 1,

where q = (qx, qy) is the location of the center of the disc in the inertial frame. Let

ν = [vx, vy, ωz] be the vector of linear and angular velocities and a1 be the closest

point on body 1 (the disc) to the plane (defined by y = 0). Similarly, let a2 be

the closest point on the plane to body 1 (a2y = 0 and can be removed from the

system of unknowns). Thus we have M = diag(m,m, 0.5m), where m is the mass

of the disc and 0.5m the moment of inertia, papp = [0,−mgh, 0]T , with g = 9.81,

the acceleration due to gravity, and
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r =

(a`+1
1x − qx)

(a`+1
1y − qy)

 Wn =

 n̂

r⊗ n̂


Wt =

 t̂

r⊗ t̂

 ∇a1f1(a`+1
1 ) =

2(a`+1
1x − qx)

2(a`+1
1y − qy)


where r is the vector from the center of gravity of the disc to a1 and ⊗ connotes the

2D analog of the cross product (for two vectors x = [x1, x2]T ,y = [y1, y2]T ,x⊗ y =

x1y2 − x2y1).

Assuming that y = 0 is the equation of the ground plane, there are 11 un-

knowns for this system: z = [ν, a1, a2x , l1, l2, pn, pt, σ]. The system of equations

for the unit disc is:

0 = −Mν`+1 + Mν` + W`+1
n p`+1

n + W`+1
t p`+1

t + papp (3.96)

0 = a`+1
2 − a`+1

1 + l1∇a1f1(a`+1
1 ) (3.97)

0 = ∇a1f1(a`+1
1 ) + l2n̂ (3.98)

0 ≤ l1 ⊥ f1(a`+1
1 ) ≥ 0 (3.99)

0 ≤ pn ⊥ f1(a`+1
2 ) ≥ 0 (3.100)

0 = µp`+1
n (WT

t

`+1
ν`+1) + σ`+1p`+1

t (3.101)

0 ≤ σ ⊥ µ2p`+1
n p`+1

n − p`+1
t p`+1

t ≥ 0 (3.102)

The initial configuration of the disc is q = [0, 1, 0], initial velocity is ν =

[−3, 0, 3], mass is m = 1, and µ = 0.4. Figure 3.6a shows the kinetic energy of the

disc for our implicit representation along with the Stewart-Trinkle LCP implemen-

tation using various levels of discretization as it rolls along the horizontal surface.

When using an implicit curve representation to model the disc and our new for-

mulation presented above, we get no energy loss (within the numerical tolerance of

10−6 used for our simulations) as seen by the horizontal line. When using the LCP

formulation we have energy loss as discussed earlier.
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3.5.3.2 Example 2: Sphere on Two Spheres

This example consists of a small sphere moving in contact with two larger fixed

spheres. This example is chosen to compare the results of our geometrically-implicit

method to those presented in [115] and [66] ([115] was able to solve this problem with

implicit geometric information because a closed form distance function is available

between two spheres). Figure 3.9a shows a small unit sphere in simultaneous contact

with two larger fixed spheres. The sphere of radius 10 units is located at (0, 0, 0) in

the inertial frame and the sphere of radius 9 units is located at (0, 11.4, 0). There

is also a constant force of λapp = [1.0, 2.6, − 9.81, 0, 0, 0]T applied to the small

sphere. With this force, the sphere initially has one of its contacts rolling while

the other contact is simultaneously sliding, the rolling contact transitions to sliding,

and both contacts eventually separate. It is important to emphasize that all these

transitions are captured using a fixed time step implementation.

(a) A small sphere in contact with two
large spheres.
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(b) Velocities of small moving sphere

The initial configuration and velocity of the small moving sphere is

q = [0, 6.62105263157895, 8.78417110772903, 1, 0, 0, 0]T

ν = [0, 0, 0, 0, 0, 0]T .

The friction parameters are: et = 1, eo = 1, er = 0.3, and µ = 0.2. There are

32 variables in our NCP formulation (6 velocity variables and 13 variables for each

contact: 6 contact point coordinates for the two bodies, 2 Lagrange multipliers, 4
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contact impulses and σ for the contact). We used a step size h = 0.01 (Tzitzouris-

Pang use h = 0.1).

The generalized velocity of the sphere is shown in Figure 3.9b. The smooth

velocity profile agrees well with the nonlinear Tzitzouris-Pang formulation [115].

The Liu-Wang formulation [66] experienced non-smooth velocity jumps when the

small sphere separated from the larger fixed spheres, which they attributed to an

explicit time-stepping scheme. In the LCP Stewart-Trinkle implementation, the

velocity profiles were very non-smooth. These results further confirm our belief that

both linearization and explicit time-stepping lead to inaccuracies.

The fidelity of our method is further emphasized by Figures 3.9a and 3.9b

that show the forces and sliding speed magnitudes at the two contacts. Contact 1

starts as a sliding contact and we see the sliding speed increases as the normal force

decreases. Also, the magnitude of the friction force is equal to µλ1n, consistent with

our friction law for a sliding contact. At approximately 3.2 seconds, the small sphere

separates from the large sphere at this contact, and all forces acting at contact 1 and

the sliding speed drop to zero. Contact 2 on the other hand starts out as a rolling

contact until approximately t = 3 seconds when it transitions to sliding. During

the rolling phase the frictional magnitude is bounded by µλ2n as required by the

friction law, and the sliding speed is 0. At the transition to sliding, the magnitude

of the friction force becomes equal to µλ2n and the sliding speed begins to increase.

Finally, at approximately t = 3.6 seconds, the contact breaks and all forces at this

contact and the sliding speed drop to zero.

3.5.3.3 Example 3: Disc falling on a compliant half-plane

In this example, we simulate a rigid unit disc falling onto a compliant horizontal

half-plane. The contact is modeled as a single frictionless contact with no damping.

Depending on the value of maximum deflection, the disc may or may not make

contact with the rigid core of the half-plane. Figure 3.10 illustrates the problem.

There are 12 unknowns in this system, with 4 complementarity constraints:

z = [u,v] = [vx, vy, ω, a1x, a1y, a2x, a2y, l1, l2, δn, pns, pnr].
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(b) Force and sliding speed at contact 2

Figure 3.9: Contact 1 is always sliding until separation, hence the µ nor-
mal force curve and friction magnitude curve overlap for the
duration. The value of µ = 0.2
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Figure 3.10: Unit disc falling onto a frictionless compliant surface

The equations of motion for this system are (omitted superscripts indicate time `,

except for the Lagrange multipliers l1 and l2 that are always evaluated at `+ 1):

0 = −Mν`+1 + Mν + W`+1
n p`+1

ns + W`+1
n p`+1

nr + papp (3.103)

0 = p`+1
ns − hkδ`+1

n (3.104)

0 = a`+1
2 − a`+1

1 + l1n̂ (3.105)

0 = l2∇a1f1(a`+1
1 ) + n̂ (3.106)

0 ≤ l2 ⊥ f1(a`+1
1 ) ≥ 0 (3.107)

0 ≤ l1 ⊥ a`+1
2y + δ`+1

n ≥ 0 (3.108)

0 ≤ p`+1
ns ⊥ a`+1

1y + δ`+1
n ≥ 0 (3.109)

0 ≤ p`+1
nr ⊥ δon − δ`+1

n ≥ 0 (3.110)
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The unit disc’s initial position was q = [0, 1.5, 0] with zero initial velocity

ν = [0, 0, 0]. The only force acting on the disc was gravity. The mass of the

disc was 1 kg and the moment of inertia about the center of mass was 0.5 kg· m2.

We used a step size h = 10−4s. The spring stiffness we used was k = 1000kg/s2.

The maximum penetration depth was altered for two experiments such that for the

first experiment impact with the rigid core occurs, and for the second experiment

impact with the rigid core does not occur. For experiment one, δ0
n = 0.05m and for

experiment two δ0
n = 1m.

Figure 3.11 illustrates the results of the first experiment in which the maxi-

mum spring deflection was not large enough to prevent impact with the rigid core.

There is a large non-penetration impulse (Fig. 3.11a) generated at approximately

0.34 seconds corresponding to when the spring reached maximum deflection and

impact with the rigid core occurs. As expected with a rigid impact, we also see an

instantaneous change in velocity (Fig. 3.11d) to zero and loss of energy (Fig. 3.11e).

Subsequent to the impact, the motion of the disc (Fig. 3.11c) become oscillatory

as it bounces on the undamped spring (Fig. 3.11b) and the velocity is smooth. As

seen in Figure 3.11e the total energy is preserved after impact within a tolerance of

10−5J, which is acceptable using a time step of 10−4s and an Euler approximation

in the time-stepping formulation.

For the second round of experiments, the maximum spring deflection was set

large enough that impact with the rigid core never occurs. We see the oscillatory

behavior of the position over the lifetime of the simulation (Fig. 3.12c) as expected

with an undamped spring. As guaranteed by our model, no component of the

normal force comes from impact with the rigid core; the spring contributes solely

to the normal force (Fig. 3.12b). Additionally, without any impacts the plot of

velocity is smooth with changes occurring only from the force of gravity and the

spring force (Fig. 3.12d). Since there is no impact nor damping of the spring, we

expect there to be no loss of energy in the system. Figure 3.12a confirms this, where

again the energy is conserved within a numerical tolerance of 10−5J.



99

 0

 5000

 10000

 15000

 20000

 25000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

F
or

ce
 (

N
)

Time (s)

NonPenetration force

(a) Non-penetration force

 0

 10

 20

 30

 40

 50

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

F
or

ce
  (

N
)

Time (s)

Spring force

(b) Spring force

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

P
os

iti
on

: l
in

ea
r 

(m
),

 a
ng

ul
ar

 (
ra

d)

Time (s)

qx
qy

theta

(c) Position of the disc’s center

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

V
el

oc
ity

: l
in

ea
r 

(m
/s

),
 a

ng
ul

ar
 (

ra
d/

s)

Time (s)

vx
vy
w

(d) Velocity of the disc

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

E
ne

rg
y 

(J
)

Time (s)

pot disc
pot spring

kin
total

(e) Energy

Figure 3.11: Simulation results for a unit disc falling on a half-plane mak-
ing contact with the rigid core.
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Figure 3.12: Simulation results for a unit disc falling on a half-plane with-
out making contact with the rigid core.

3.5.3.4 Example 4: Probabilistic Grasp Planning

In this example, we repeated, in simulation, an earlier grasping experiment

done by Brost and Christensen [20]. The goal of the experiment was to study

the probability of success of a given grasping strategy under uncertainty in the

friction forces between the gripper and part and between the part and the support

surface. Performing these experiments in simulation has the advantage of being

faster and cheaper, but is useless if the simulation is not accurate enough. If one

uses a polyhedral approximation for representing the geometry of the lock piece,

they have implicitly assumed that the set of nonpenetration constraints is “locally”

convex. That is, for the duration of the current time step, the set of nonpenetration

constraints can be accurately represented as a conjunction of linear inequalities.

This assumption is violated whenever a vertex of the gripper is “close” to a vertex
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of the part [36].

Figure 3.13: The parameterization of the system as shown in Figure 11
from [20]

Figure 3.13 is taken from [20] and illustrates the system, a parallel jaw gripper

and a gear piece. We model the gear as a union of super-ellipses and model the

grippers as intersections. Let q = [xg yg θg xr xl]
T be the generalized configuration

of the system, where [xg yg θg] is the position and orientation of the gear, xr is

the x-position of the right gripper’s fingertip, and xl is the x-position of the left

gripper’s fingertip.

The gear’s equations are given by the union of:

f(ξx, ξy) ≡ (ξx − q1)2 + (ξy − q2)2 − 20.75 = 0 (3.111)

fi(ξx, ξy) ≡
(
ξx − (q1 + rix)

2.3

)4

+

(
ξy − (q2 + riy)

1.1

)4

− 1 = 0 (3.112)

where ri is the vector from the gear’s center of mass to the center of the ith tooth10.

The values used for this simulation were ri = 20.75[cos(θi) sin(θi)]
T , where θ1 =

4.103727, θ2 = 4.253125, θ3 = 4.402522, θ4 = 5.022255, θ5 = 5.171653, and θ6 =

5.321051.

The grippers only make contact with the gear with their respective fingertip,

inside edge, or top edge. Therefore we simplify the modeling of the grippers to be

10For brevity frame transformations have not be shown, in practice one must be careful to
maintain frame consistency.
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the intersection of the two planes adjacent to the fingertip vertex. For the right

gripper, the equations are given by the intersection of:

fr1(ξx, ξy) ≡ ξy = 0 (3.113)

fr2(ξx, ξy) ≡ −(ξx − q4) = 0 (3.114)

and for the left gripper, the equations are given by the intersection of:

fl1(ξx, ξy) ≡ ξy = 0 (3.115)

fl2(ξx, ξy) ≡ ξx − q5 = 0 (3.116)

The non-penetration constraint between the right gripper and the disc part of

the gear is,

0 = a2 − a1 + l1∇a2f(a2) (3.117)

0 = ∇a2f(a2) + l2∇a1fr1(a1) + l3∇a1fr2(a1) (3.118)

0 ≤ l1 ⊥ −f(a2) ≥ 0 (3.119)

0 ≤ l2 ⊥ −fr1(a1) ≥ 0 (3.120)

0 ≤ l3 ⊥ −fr2(a1) ≥ 0 (3.121)

0 ≤ λin ⊥ f(a1) ≥ 0 (3.122)

where a1 is the closest point on the right gripper to the disc, a2 is the closest point on

the disc to the right gripper, and λin is the component of the non-penetration force

associated with this contact. The remaining contact constraints can be formulated

analogously.

Friction in the plane of motion is important, so for this problem we used a 2.5D

dynamic model [18], with force-controlled parallel jaw grippers. In order to virtual

replicate the original simulation, we assumed that the coefficients of surface friction,

and coefficient of gripper friction were unknown parameters. Then for each (xi, yi)

in a 20mm by 20mm box of initial positions (sampled at 1mm resolution), assign

random values to the unknown parameters and simulate the grasp. The success
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probability for each (xi, yi) pair was estimated as the total number of successful

grasps divided by the number of trials. The goal configuration (as defined in [20])

is when the tips of the fingers lie on the outer edges of the outer-most teeth.
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Figure 3.14: Comparison between the results found by Brost and Chris-
tiansen in [20] to our simulation results.

Figure 3.14 illustrates a comparison between our results and the results re-

ported by Brost and Christiansen; qualitatively, our results agree well.

3.6 Summary

Four new time-stepping formulations were presented. These formulations were

constructed for a variety of reasons, including accuracy, performance, problem class,

and design. We see several directions for future work. We would like to address the

existence and uniqueness of solutions for the fully implicit mixed NCP we developed.

For our work with non-convex polygonal constraints, we would like to extend the

method to 3D bodies. In addition, when interpenetration has occurred, there is

nondeterminism in the formulation that we would like to remove. We have already

begun implementing these extensions, details can be found in the following tech

report [82]. The next chapter discusses a new software tool, which implements these

time-stepping formulations.



4. daVinci Code

This chapter discusses a new software tool we created dubbed dVC. It is designed

to facilitate simulation, analysis, and virtual design of multibody systems with in-

termittent unilateral contacts with dry friction. As stated earlier, these systems are

notoriously difficult to simulate accurately due to the nonsmooth nature of the un-

derlying mathematical model. In fact, commercial software for simulating multibody

systems with unilateral contacts and dry friction (DADs, Adams, Working Model)

deal with the nonsmoothness by ad hoc regularization methods (e.g., penalty meth-

ods to remove unwanted interpenetration of bodies by local nonlinear spring and

damper effects). These methods require tuning of simulation parameters and the

algorithms often have no guarantees on stability and convergence. As a result, the

user must select several tuning parameters (including the size of the time step and

material properties) by trial-and-error just to achieve stable, believable simulation.

In these approaches, it is difficult to prove convergence, and there is no way to

benchmark the accuracy of such methods.

In contrast, dVC uses state-of-the-art time-stepping methods, discussed in

earlier chapters, to capture the nonsmooth phenomena (stick-slip transitions and

contact loss and formation) without regularization. These methods are numerically

stable and provably convergent. In particular, it has been proven that when the

Stewart-Trinkle (ST) and Song-Pang-Kumar (SPK) methods are applied to dynamic

systems, as the step size goes to zero, the trajectories produced by the time-steppers

converge to the exact solution of the original instantaneous-time model [45, 109].

This convergence property has been available for solvers for ordinary differential

equations and differential algebraic equations for some time, but only recently for

some constraint-based time-stepping methods.

As alluded to above, dVC allows the user to choose between different motion

models. It allows comparison and validation of multibody modeling choices (e.g.,

one chooses to use a quasistatic model, but should have chosen a dynamic model).

Second, it enables a hierarchical and iterative approach to design processes. As an

104
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example, consider the design of a part feeder (also discussed later). Geometric and

dynamic parameters are critical to the functioning of the device and there are many

parameters (e.g., coefficients of friction) that are characterized by uncertainty. We

would like to be able to consider only the geometry initially to prune the design

space eliminating large sets of geometric parameters that render the design infea-

sible. This can be done by simple geometric models. We then want to be able

to refine the design space with quasi-static models, and then using more expensive

dynamic models. Thus we can use low-resolution models to quickly eliminate many

design alternatives using more complicated models characterized by many unknown

parameters to search over a smaller set of feasible designs.

4.1 Simulation Overview

dVC consists of several modular components (plugins) that have been written

in such a way that they can be extended and replaced at runtime based on the

desired configuration. Figure 4.1 gives a high level view of the components of dVC.

The main function of the library is to provide the API (Application Programming

Interface), which is our defined set of calling conventions. The library acts as the

central controller organizing calls to the plugins, which in turn do the actual physics

simulation work.

User App

Collision Detection Time Stepper Solver

daVinciCode Library

 level

Plugin

Library

  level

Application

Figure 4.1: daVinci Code Architecture.

During simulation, an example time step consists of the following actions:

1. call collision detection plugin with the current scene’s state

2. call the time-stepper plugin with the results of the collision detection plugin
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3. call the solver plugin with the complementarity problem formulated in the

time-stepper plugin

4. Update the bodies’ state with the result of the solver plugin

4.1.1 Bodies

The framework for specifying bodies in a simulation was designed to be both

flexible and object oriented. All bodies in dVC will from a base Body type, which

consists of the minimal amount of data any body in dVC will need. For example,

the base class contains configuration information, a pointer to geometric data, a list

of contacts, etc. A scene cannot actually contain a body from this base class, a user

must implement their own body or use one of the three pre-defined classes available:

Obstacle, Kinematical, or Dynamical.

The reasons for these different body types are efficiency and clarity. The

simplest body type is Obstacle, which is a body with a configuration fixed for

the duration of the simulation. It does not contribute any unknowns to the time-

stepping model, however, it can become involved in collisions (or near misses), so

its geometric information is made available during collision detection.

The next slightly more complicated body type is the Kinematical body. This

body type implies the body is not subject to dynamical forces, but is instead kine-

matically controlled by a user specified function of time. Since the configuration

and velocity of this type of body is known for all time during simulation, it does

not contribute unknowns to the model of the system. However, it too can become

involved in collisions, so its geometric information is made available during collision

detection. From the user’s perspective, including a Kinematical body in a simula-

tion is quite simple. One merely needs to set the position control law for the body,

which is handled by our abstract PositionController class that is easily extendable.

The user simply implements a single function callback specifying the position and

orientation of the body as a function of time.

The last body type, and also the most complicated, is the Dynamical body.

This body type contains velocity, constraint forces, mass and inertia values, etc.

It also can have several force controllers attached (in similar fashion to position
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controller) for the application of non-constraint forces (e.g. control input.)

4.2 Plugin Overview

From figure 4.1, it may appear that the plugins are independent, but this is not

the case. For an example, the time-stepper plugin implicitly defines if the problem

formulation is an NCP or an LCP, which effects the solver plugin. In addition,

the collision detection plugin implicitly defines a geometric model. These inter-level

dependencies are managed at the library level, assuring that the selected plugins are

compatible.

4.2.1 Collision Detection

dVC uses collision detection and distance computation in two different ways.

Under the rigid body assumption, the formulation of a time-step problem requires

knowledge of points in contact, contact normals, and the same information for points

not quite in contact and for points that have penetrated (due to numerical or lin-

earization errors). In the rigid body case, specific times and locations of collisions

are not required; nonetheless, the solution of the time-step problem is consistent

with the model at the end of the time step. On the other hand, if the bodies are

assumed to have compliant surfaces, then distance queries must be used to find

precise times of impact between bodies. This is required to properly calculate local

deformations and for adapting the time step based on the effective local stiffness.

In both cases, dVC maintains an active constraint set, which contains the distance

and normal information for all geometric feature pairs that could come into contact

during the ensuing time-step.

4.2.2 Time-steppers

The TimeStepper class approximates force and state trajectories for the bodies

in the scene over the course of the simulation. By designing the TimeStepper class

to be extensible, we have been able to implement several time-stepping models that

the user can use interchangeably.
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4.2.3 Complementarity Problem Solver

dVC has implemented a wrapper plugin that uses the well-known PATH solver

[43] to solve the subproblems. The PATH solver was introduced in 1995 and has

since become the standard against which all others are compared [19]. In addi-

tion to solving the standard LCPs, the PATH solver can also solve mixed linear

and nonlinear complementarity problems. PATH is closed source, but has a freely

downloadable binary available from [42].

Our focus to date with dVC has been engineering applications, however other

applications such as haptics or virtual reality may make use of iterative solvers.

Iterative solvers improve solution accuracy monotonically and thus are appealing

to these applications since an “early exit” often yields a solution that is believable,

despite its inaccuracy. The flexibility of dVC allows the user to develop various

solvers, and select them based on the current task at hand.

4.3 Simulated and Experimental Results

To illustrate the capabilities of dVC, several example systems are presented

with experimental results. The first example describes how dVC can be used to

help design dynamical systems with intermittent frictional contacts and uncertainty

in the model. In the second example, dVC was used to design open loop plans for

a planar micro-manipulation task. In the final example, dVC was used to analyze

grasping strategies for a planar part; choosing strategies where success is likely even

when “a guaranteed strategy does not exist” [20].

4.3.1 Design of a Part Reorienting Device

This example is taken from a parts feeding application [103]. It is a device

with a cavity of complex geometry (as shown in Figure 4.2) designed to orient a

cup-shaped part. Regardless of the part’s initial orientation in the top chute, after

it falls through the cavity it must enter the lower vertical chute with its center of

gravity down.

The problem consists of a design parameter space P and an uncertainty space

M . Design parameters are parameters we have control over (in this case, 12 param-
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Figure 4.2: Snapshots of the gravity-fed part in the feeder.

eters) that define the geometry of the device. The uncertainty space exists because

models are not perfect and certain physical properties (like friction coefficients) are

difficult to measure and predict. The state of the system x(t) was a function of:

t, x0, p, and m, where p ∈ P , m ∈M and x0 is the initial condition. The goal was

to find some p ∈ P that works for all m ∈M .

The solution approach was to randomly sample P for a design that was ge-

ometrically feasible (motion planning), then thoroughly sample M to verify the

design. The dVC simulator lends itself nicely to this verification system through

its modular design. Using dVC, a hierarchical algorithm was written and easily

implemented:

1. Verify with geometric model

2. For all mi ∈Mµ, verify with inelastic ST model

3. For all mi ∈M , verify with SPK model

where the Mµ uncertainty space consists of the unknown initial cup orientation and

friction coefficients and M adds the additional unknown parameters arising from

the locally deforming viscoelastic frictional contacts.

This hierarchical planning through the use of dVC allowed for a significant

savings in design time, since the simpler model could be used to prune away failed
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Naive Verification Hierarchical Verification
Geometric N/A 603 s

ST 5000 s 2935 s
Total 5000 s 3538 s

Table 4.1: Hierarchical approach to design

designs without the need of testing with the more accurate, but also more compu-

tationally expensive model. Table 4.1 displays the running times of the verification

algorithms under the naive approach, and our hierarchical approach for the geomet-

ric and inelastic ST models. We saw of savings of 1462 seconds using our hierarchical

planner because we did not run the more computationally expensive dynamic model

on designs where no geometric solution existed.
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Figure 4.3: The left figure shows time-elapsed image of the part passing
through the orienting device. The green line with crosses
is the trajectory of the center of gravity. The right figure
shows a comparison of experimental data with the simulation
results.

A similar experimental device was built in the GRASP Lab at the University

of Pennsylvania and instrumented to compare real and simulated trajectories. A

typical trajectory of the part is illustrated in Figure 4.3a. A motion capture system

and basic image processing tools were used to extract the boundary of the part at a
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rate of 500Hz. The boundary images were fit to a simple graphical model for display

purposes. The trajectories obtained via experimentation and the Stewart-Trinkle

time-stepper are shown overlaid in Figure 4.3b. The path of the cup shaped part

determined from the simulated feeder matches closely when experimentally verified.

4.3.2 Needle pushing a planar slider

The second experiment is an assembly problem taken from a planar micro-

manipulation experiment [22]. Figure 4.4 presents 2 pictures of the experimental

setup as seen through a microscope. The goal in this problem is to find a pushing

path for the needle (labeled probe in figure 4.4a) to push the block from the initial

configuration to a goal configuration (shown in figure 4.4b). dVC was used to

simulate candidate pushing plans from a space of possible pushing plans to find one

capable of accomplishing the task.

1612 um

842 um

895 um

173 um

Probe

Test Fixture

Configuration A

Configuration B

Figure 4.4: Images taken from a microscope of the experimental micro
part and assembly. The left image shows the dimensions of
the part and the right image shows the initial (A) and goal
(B) configurations.

Since friction in the plane of motion was important and inertial forces were an

order of magnitude smaller than the frictional due to dimensions, for this problem we

used a 2.5D quasi-static model, with a position-controlled trajectory of the needle.

The locations of the support points and coefficients of friction were identified through

experimentation. Figure 4.5 illustrates several frames of simulation. The support

points are the 3 small dark circles inside the peg, and the lines extending from them
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are a visualization of the friction force components resisting the motion of block.

(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

Figure 4.5: Four screen shots from the simulated planar micromanipu-
lation task. The small dark circles inside the peg are the
support points shown with corresponding tangential friction
force vectors.

Figure 4.6 shows a comparison of the simulated and experimental trajectories.

The path of the peg determined from the simulated pushing path matches closely

when experimentally verified. The other components of the trajectory also match

closely. The flexibility of dVC allows us to choose the desired physical model and

also to use it as an open loop path planning tool.
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Figure 4.6: Comparison of 2.5D simulation with experimental data.
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4.3.3 Probabilistic Grasp Planning

In this example, dVC was used to simulate an earlier grasping experiment [20].

The goal of the experiment was to study the probability of success of a given grasping

strategy under uncertainty in the friction forces between the gripper and part and

between the part and the support surface. The task is to grasp a planar part with

a parallel-jaw gripper. The part and gripper are shown in figure 4.7, as well as the

coordinate system used in the simulation. The part is slightly more than 40 mm

in diameter. The midway point between the tips of the fingers is measured with

respect to the center of the part (Figure 4.7). The goal is to estimate the probability

of a successful grasp as a function of x and y.

Figure 4.7: The parameters x and y describe the position of the center
point between the fingertips, relative to the center of the
gear.

Similar to the parts reorienting device example, this example also contains a

large uncertainty space: the location of the support points of the part, coefficient of

surface friction, and coefficient of gripper friction. The location of the part in the

world was known exactly. Similar to the micro-manipulation experiment, friction in

the plane of motion is again important, but here we cannot ignore the inertial forces.

For this problem we used a 2.5D dynamic model, with force-controlled parallel jaw

grippers. Then for each (xi, yi) in a 20mm by 20mm box of initial positions (sampled

at 1mm resolution), assign random values to the unknown parameters and simulate

the grasp. Estimate the success probability for each (xi, yi) pair as the total number

of successful grasps divided by the number of trials. The goal configuration (as
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defined in [20]) is when the tips of the fingers lie on the outer edges of the outer-

most teeth.

When we used our simulator to repeat the grasp acquisition experiments per-

formed by Brost and Christensen, we discovered a problem. The polyhedral approxi-

mation of the circular part and grippers led to non-penetration constraints that were

non-convex, but the underlying mathematical model used in the simulation assumed

that the non-penetration constraints are always convex. That is, the model assumes

the set of non-penetration constraints can be accurately represented as a conjunc-

tion of linear inequalities. This assumption is violated whenever a vertex of the

gripper is “close” to a vertex of the part. This led to the realization that the set

of constraints should be represented as a disjunction of inequalities (discussed in

section 3.2).

(a) The simulator imposes non-penetration constraints
between the gripper vertex and edges A and B (each
treated as a half space). Thus the vertex of the grip-
per is restricted to lie to the right of the fictitious
edges (shown as dashed line extensions of the edges)
rather than facets A and B (highlighted with bold
solid lines).

(b) Position of the gripper and part at
the end of the time step. Note that
the gripper vertex is positioned on
the lower fictitious edge, and is not
in contact with the boundary of
the part.

Figure 4.8: Effect of a non-convex non-penetration constraint in a grip-
ping experiment.

Figure 4.8a shows a vertex of the gripper in contact with a vertex on the part.

Because of the proximity of the gripper to two facets, A and B, of the part, the

simulator imposes non-penetration constraints between the gripper vertex and edges

A and B (each treated as a half space). Thus the vertex of the gripper is restricted

to lie to the right of the fictitious edges (dashed line extensions of the edges) rather

than facets A and B (highlighted with bold solid lines). Figure 4.8b shows the
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position of the gripper and part at the end of the time step. Note that the gripper

vertex is positioned on the lower fictitious edge, not in contact with the boundary

of the part. In preparing for the next time step, the collision detection algorithm

will eliminate the facet A, and therefore its fictitious edge, from consideration, so

the gripper will move toward facet B. Over multiple time-steps, the effect is that

the gripper “bounces” rather than slides down the edge of the part. This behavior

greatly affects the outcome of each grasp acquisition attempt. A finer polygonal

approximation and smaller time steps will reduce the problem, but not remove it.

Modeling the non-penetration constraints as a disjunction of inequalities (dis-

cussed in section 3.2) allows us to produce simulation results. Figures 4.9a and 4.9b

illustrate two typical simulation results. The figures are 2D projections of the 3D

histogram of successful grasps. These figures were created assuming a fixed support

point tripod location on the lock, and selecting random values for the coefficients of

friction in the specified ranges. Figure 4.9a is the result for medium surface contact

friction coefficients and medium gripper contact friction coefficients. Figure 4.9b

is the result for medium surface contact friction coefficients and high gripper con-

tact friction coefficients. For the presented results, coefficients of friction from the

medium group range in values between: (0.33, 0.66], and high: (0.66, 0.99].
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Figure 4.9: 2D map of the 3D histogram of successful grasps for various
friction coefficients.

Our initial results agree well with the experimental results presented in [20].

Current work focuses on developing a better understanding of the friction coefficient

influences, developing better sampling strategies for the support point tripod, in-
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corporating other physical models and developing hierarchical planning techniques

similar to example 1.

4.4 Summary

We presented daVinci Code, which is a new software tool we designed and

implemented to facilitate simulation, analysis, and virtual design of multibody sys-

tems with intermittent frictional unilateral contact. We are currently extending our

simulator to work for 3D systems. We also would like to develop a suite of test

problems, for which we can test the accuracy of various time-stepping methods.

The next chapter performs one such study.



5. Sources of Error in a Simulation of Rigid Bodies

In this chapter we present initial results (published in [17]) verifying the accuracy of

the Stewart-Trinkle time-stepping method [110] presented earlier, which lies at the

core of the dVC physics engine [18] presented in chapter 4. One of the benefits of our

time-stepper is that as the time step goes to zero, the solution trajectories converge

to a solution of the original instantaneous-time problem [45, 109]. Additional results

are presented showing the effects of various sources of model approximation errors.

Most of the problems studied had time-stepping subproblems formulated as linear

complementarity problems (LCPs). These were simulated using dVC. However,

custom C-code was written for problems whose subproblems were formulated as

nonlinear complementarity problems (NCPs). All the LCPs and NCPs were solved

by the state-of-the-art complementarity problem solver, PATH [43].

All the results presented here were obtained through numerical studies of a

challenging and important problem studied analytically and experimentally by Vose

et al. [118, 119, 120]. In particular, they studied the motion of a particle on a

nominally rigid plate moving with a specified periodic (high frequency) trajectory.

When viewed on a long time scale (several cycles at a time), such periodic inputs

cause the friction forces to generate velocity fields that can be used to move parts

along specified paths on the plate. This work is motivated by problem of assembly

of tiny parts that are very difficult for humans (or robots) to manipulate, but could

possibly be assembled (possibly many at once) on a vibrating plate.

As will be seen below, the advantage of studying this problem via simulation is

that after verifying our simulation results against their theoretical and (qualitative)

experimental results, we were immediately able to study an extended array of prob-

lems that violated the assumptions made by Vose et al. to facilitate their analytical

study. One of these assumptions was that the particle was always in sliding contact

with the plate. Its main effect was to limit the location of the particle to a small

region of the plate where the assumption held. We were able to study the motion

of the particle in contact anywhere on the plate, observing motions with stick-slip

117
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behavior and loss of contact. In addition, we are able to study the effects of lin-

ear approximations of the friction cone at the contact point, a commonly applied

simplification of the dynamic model. These results are discussed below.

A second result presented is in designing new plate motions to generate a

desired part motion. This is done through an optimization framework, where a

simulation of the part interacting with the plate (including the full dynamics of the

system) is performed, and based on the results of the simulation the motion of the

plate is modified.

5.1 Dynamic Model

The system Vose et al. studied [118, 119, 120] consists of two pieces (Fig-

ure 5.1); a kinematically controlled plate and a dynamical part interacting with the

plate.

Wf λf

Wn λn

appλ

g(t)

grav

Figure 5.1: The plate is kinematically controlled by the vector function
g(t). There are three forces acting on the part: the force due
to gravity λapp, the non-penetration constraint force Wnλn,
and the frictional force Wfλf .

Let q = [x y z es ex ey ez]
T be the configuration of the part where [x y z]T is

the location of the center of mass of the part in a fixed world frame and [es ex ey ez]
T

is a unit quaternion representing the orientation of the part with respect to the fixed

frame. es = cos(θ/2) and [ex ey ez] = sin(θ/2)b̂ where θ is the angle of rotation

and b̂ is a unit vector parallel to the axis of rotation. Let ν = [vx vy vz ωx ωy ωz]
T

be the velocity twist of the part in a fixed world frame, where v = [vx vy vz] is

the translational velocity of the center of mass of the part and ω = [ωx ωy ωz] is
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the angular velocity. Let λapp(q, t) ∈ R6 represent the resultant of the externally

applied forces at time t, which for this problem is only gravity. Let n̂i be the unit

vector normal to the tangent plane at contact i, and t̂i and ôi be two orthogonal unit

vectors both orthogonal to n̂i (i.e. basis vectors of the tangent plane) at contact i.

Let λin > 0 be the magnitude of the normal contact force at the ith contact point,

and λit and λio the corresponding orthogonal friction force components. Further,

let λn be the concatenated vector of all the normal contact force magnitudes, and

λt and λo the respective concatenated vectors for the tangential force magnitudes.

5.1.1 Instantaneous Dynamics

For this particular system of a part interacting with a kinematically controlled

plate (figure 5.1), the DCP can be written as [24, 113, 112]:

M(q)ν̇ = Wn(q)λn + Wt(q)λt + Wo(q)λo + λapp(q, t) + λvp(q, ν) (5.1)

q̇ = G(q)ν (5.2)

0 ≤ λn ⊥ ψn(q, t) ≥ 0 (5.3)

0 = (Uλn)◦(vt) + λt◦σ (5.4)

0 = (Uλn)◦(vo) + λo◦σ (5.5)

0 ≤ σ ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0 (5.6)

Equation (5.1) is the Newton-Euler equations of the system. The matrix

M(q) =

mI3×3 0

0 I(q)

 is the mass-inertia matrix of the part, where m is the

mass of the part and I is the inertia tensor. The vector λvp =

 0

−ω × I(q)ω

 is

the velocity product term of Euler’s equation. The matrices W(·) =
[
· · ·Wi(·) · · ·

]
∈

R6×nc , where nc is the number of contacts, are dependent on q and map the normal
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and frictional wrench magnitudes to the body reference frame:

Win(q) =

 n̂i(q)

ri(q)× n̂i(q)

 Wit(q) =

 t̂i(q)

ri(q)× t̂i(q)

 Wio(q) =

 ôi(q)

ri(q)× ôi(q)


(5.7)

where ri is a vector from the center of mass of the part to contact i. The dependence

on q may not be obvious as written, since for brevity we have not written the vectors

with respect to a frame. Typically n̂i is known in the fixed world frame but ri

is known in the body fixed frame (b). Therefore, the cross product term in the

wrenches becomes Rbri × n̂i, where R(q) ∈ R3×3 is the rotation matrix converting

the body frame to the fixed world frame. Similarly, the inertia matrix is known

with respect to the body fixed frame and also must be converted to the fixed world

frame, I = RbIRT .

Equation (5.2) is the kinematic map of the system where G is the matrix

mapping the generalized velocity of the body to the time derivative of the position

and orientation. G(q) =

I3×3 03×3

04×3 J4×3(q)

 where I3×3 is the identity matrix of given

size and J(q) = 1
2


−ex −ey −ez
es ez −ey
−ez es ex

ey −ex es

.

Equation (5.3) is the nonpenetration constraint for all contacts written as

a complementarity condition where ψn is a concatenated vector of all the signed

distance functions for each contact i (e.g. the signed distance between the part’s

corners and the kinematic plate’s face). The distance is positive at contact i when

the vertex-face pair at this contact is separated, it becomes zero when the vertex-

face pair is touching, and it becomes negative when the vertex has penetrated the

face. Note that in general there is no closed form expression for ψin(q, t).

Equations (5.4)–(5.6) represent Coulomb’s friction law, written compactly for

all contacts, where U is a diagonal matrix with ith diagonal element equal to µi, the

coefficient of friction (in this paper, the kinetic and static coefficients of friction are
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equal, so no distinction is made) at contact i, σi is a Lagrange multiplier arising from

the conversion of the maximum dissipation condition from its “argmax” form into

the inequality form given above, vt and vo are the concatenated vectors of sliding

velocities for all contacts, and ◦ connotes the Hadamard product (i.e. a ◦ b =

[a1b1 a2b2 . . . anbn]T ). The value of σi also has a physical interpretation, it is the

sliding speed at contact i.

The orthogonal sliding velocity components vit and vio for this system with a

kinematically controlled plate can be written as:

vit = WT
it(q)ν −WT

it(g)GT (g)

(
∂g

∂t

)T
vio = WT

io(q)ν −WT
it(g)GT (g)

(
∂g

∂t

)T
(5.8)

where g(t) : R → R7 is the vector function providing the position and orientation

(unit quaternion) of the plate at time t.

5.1.2 Discrete Time Dynamics

The DCP (equations (2.35)–(2.64)) is not solved directly, but instead a time-

stepping scheme is employed and the resulting (possible nonlinear) MCP is solved

at each time step.

In the NCP formulation (equation (2.77)), we approximate the distance func-

tion at time t`+1 as ψin(q`+1) ≈ ψin(q`, t`+1) +hWT
inν

`+1. The notation ψin(q`, t`+1)

denotes that the collision detection is done with the part at time t` and the plate at

time t`+1. We can do this because the kinematically controlled plate has a known

function of time, and when approximating the distance function between the part

and plate at time t`+1, we can use the location of the plate at time t`+1. This al-

lows for the only approximation in the gap function to be the motion of the part.

Note, when the part is modeled as a particle there is no rotation and, therefore,

no approximation. If we evaluate W(·) and λvp at ` + 1, we have a fully implicit

formulation [24] with an approximation in the gap function. If we evaluate W(·) and

λvp at `, we recover the Stewart-Trinkle formulation [110] with quadratic friction

law. In simulations with a particle, the rotation matrices in the wrenches no longer
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exist and neither does λvp, resulting in a fully implicit formulation for “free.” In

the results presented below, we used the geometrically explicit formulation.

5.2 Results

In this section we present various results of our simulations. The first set of

results compares the simulated motion of a particle to its theoretically predicted

motion. Next, results comparing the trajectory error as a function of step size

and as a function of the friction approximation are presented. Lastly, timing results

between NCPs and LCPs of various sizes are given. The details on how we calculated

the orientation of the kinematic plate is given at the end of the chapter in section 5.3.

5.2.1 Simulation Verification

5.2.1.1 Analytical Results

In this section, we show that the results of simulation using the Stewart-Trinkle

time-stepper agree with the analytical results obtained by Vose et al. They were

able to obtain closed-form solutions of particle motion for a given a 2D version of

the system (shown in Figure 5.2). In this system, the plate oscillates about an

axis parallel to the plate’s surface and d units below it. While a block is shown

in the figure, the analysis was only for a particle. Similarly, the simulation results

presented in this section were obtained with a particle body. In [118], Vose et al.

showed that particles converge to a unique velocity for each position r on the plate,

which they call the asymptotic velocity at r.

z

x

r

d

Figure 5.2: A part on a plate rotating about an axis below the plate. The
fixed world frame is centered on the plate.

The particular plate motion analyzed in their paper is given by the following
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control function. Let θ(t) be the angle of the plate at time t with period T defined

by:

θ(t) =


1
2
αt2 − 1

4
αTt if 0 ≤ t < T/2,

−1
2
αt2 + 3

4
αTt− 1

4
αT 2 if T/2 ≤ t < T

(5.9)

Vose et al. impose two restrictions in order to obtain a solution for the asymp-

totic velocity of the particle, it never loses contact with the plate and it never sticks

to the plate. Under these assumptions, the average horizontal asymptotic velocity

of the part vss can be computed as

vss = br + cr3 (5.10)

where b and c are constants defined in their paper.

The first test we performed was a comparison between their numerically com-

puted asymptotic velocity of the part and the asymptotic velocity of the part found

by our simulation. To compute the asymptotic velocity, we recorded the average

velocity of the particle for each period of the plate’s motion. Since the particle does

not move very far in a single period of the plate’s motion, we consider this average

velocity an estimate of the asymptotic velocity. In addition, we also computed the

average position of the particle (in the plate’s frame) and used the x component of

the average position in equation (5.10). In order to satisfy the required assumptions

of their analysis, we set α = 180, the period T = .03 seconds, and placed the axis

of rotation 5cm below the plate.

Figures 5.3a and 5.3b empirically confirm that the assumptions of contact

maintenance and not sticking are holding. In figure 5.3b, two cycles of the plate’s

periodic motion are plotted. Except for instantaneous points where the direction

of slip changes, the magnitude of the slip speed is always positive. Figure 5.4

illustrates a comparison between the numerically computed horizontal asymptotic

velocity determined in the work of Vose et al. to our simulated velocity. Note

that initially the simulation velocity is much larger than the predicted steady state

velocity, but over time, the particle’s velocity appears to converge to the steady

state velocity. This result suggests that our time-stepping method gives a faithful
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Figure 5.4: Comparison between the numerically computed asymptotic
velocity (labeled simulated) to the value determined in the
work of Vose et al. (labeled theoretical).

representation of the dynamic model of the system.

One last point of comparison of analytical and simulated results was obtained

by varying the problem parameters. By simply moving the axis of rotation closer

to the plate, our simulation and the experimental results of Vose et al. show that

particle sticks during portions of each cycle (figure 5.5b) of the plate’s motion.

This violates the assumptions used in the analysis and thus analytical prediction of

particle asymptotic motion for this case is invalid (figure 5.5a).
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Figure 5.5: With the axis of rotation closer to the plate there are peri-
ods of sticking during the cycle, and the asymptotic velocity
found during simulation does not match (as expected) the
theoretical value determined in the work of Vose et al.

5.2.1.2 Qualitative Results

A second indication that our simulation method was producing correct results

was done by qualitative comparison of our simulations with those produced by Vose

et al. Our simulator qualitatively matched all the results in [119] (figure 5.6) and

observations of their experimental system. No quantitative experimental results

are available, however, Vose et al. kindly provided their simulation results for the

Centrifuge plate motion for a direct comparison. Figure 5.7 compares the position

of the particle and figure 5.8 compares the velocity of the particle for the first 0.14

seconds of simulation. There is a small discrepancy in the maximum velocity of the

particle, leading to linear drift in the position. The maximum error in the particle’s

x-velocity is 0.0734 cm/s, which entirely accounts for the drifting in the x-position.

5.2.2 Trajectory Error as a function of step size

In this section, we look at how the trajectory of the part on the plate varies as

a function of the step size used in the discretized mixed complementarity problem

formulation. The part was modeled as a particle to remove surface friction effects.

We use the NCP formulation with the quadratic friction law (equation (2.77))

to remove the friction linearization error and simulate the same plate controller with
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Figure 5.6: A six second simulation of all the fields described in figure 5
of [119] using a step size of 0.0001 seconds. The green circle
indicates the starting location of the particle.

various values for the step size. We compute a baseline trajectory using a step size

of h = 0.00005 seconds. Taking this trajectory as “correct”, we then compute the

error in the other trajectories as the distance at time t from the base trajectory at

time t. We chose to simulate the Centrifuge motion described in [119] since it has

four non-zero spatial velocities (two angular and two translational) and it has been

qualitatively verified. The trajectory and trajectory error as a function of step size

for a 6 second simulation are shown in figure 5.9.

From figure 5.9a, the choice of a h = 0.00005 seconds for the baseline trajectory
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Figure 5.7: Direct comparison of the particle’s position between our sim-
ulation results and those of Vose et al. for the Centrifuge
motion.

is substantiated. Halving the step size from 0.001 to 0.0005 shows a significant

improvement in the error, and reducing again (by a factor of 5) to 0.0001 also shows

a large reduction in error. At this step size, the error is mostly removed and further

reductions have little effect. The observation of h = 0.0001 seconds having small

error associated with step size is why we chose to use this step size in many of the

other simulations throughout this paper.

5.2.3 Trajectory Error as a function of Friction Cone linearization

In this section, we look at how the trajectory of the part on the plate varies

as a function of the friction linearization level used in the discretized mixed comple-

mentarity problem formulation. We use the same plate controllers and part model

as in the previous section, but now keep the step size constant (at h = 0.0001 sec-

onds) and and use a (regular) polyhedral approximation of the friction law at each

tripod support point. The trajectories are parameterized by the number of edges

in the polyhedral approximation. A baseline trajectory is computed by using the

quadratic form of Coulomb’s law at the contact point. Taking this trajectory as

“correct”, the error in the other trajectories is the distance at time t from the base

trajectory at time t.

The first results are again for the Centrifuge motion. The trajectory and tra-



128

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−5

−4

−3

−2

−1

0

1

2

time (s)

x−
ve

l (
cm

/s
)

 

 
Our Simulation Part

Vose et al. Part

(a) X-Velocity of particle and contact point

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−1

−0.5

0

0.5

1

1.5

2

2.5

3

time (s)

y−
ve

l (
cm

/s
)

 

 

Our Simulation Part
Vose et al. Part

(b) Y -Velocity of particle and contact point
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jectory error as a function of the polyhedral approximation for a 6 second simulation

are shown in figure 5.10. Interestingly, unlike the results parameterized by step size,

increasing the number of sides in the polyhedral friction cone (figure 5.10b) does

not converge to the baseline results using the “real” quadratic friction law. For this

particular plate motion, is also appears that the results converge around 16 friction

directions.

Based on these results we decided to generate a second set, this time using a

scaled version of the Circle motion described in [119]. For the scaled circle we scaled

the angular acceleration by a factor of 5, resulting in the following plate motion

function:

αz = 5
(
100 sin(66πt)

)
(5.11)

p̈z = 8 sin

(
66πt+

3

2
π

)
(5.12)
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Unlike the centrifuge results, in the scaled circle trajectory (figure 5.11a),

increasing the number of friction directions increasingly improves the trajectory

error (figure 5.11b).

5.2.4 Solution Time of Problem

Another consideration of analysis by simulation is the computation time. For

example, a 5 second simulation of a tripod using the circle field controller and

the LCP formulation (with 3 contacts and 32 friction directions at each contact)

took slightly over 2 minutes to complete on a standard laptop (Intel Pentium M

processor 1.60GHz). Conversely, the “harder” nonlinear complementarity problem

formulation with quadratic friction law took a little over 20 seconds to complete. It

is also clear from the simulations that even more friction directions are needed to

visually duplicate the trajectory generated using quadratic friction.

The above results indicate that the NCP formulation is not only more ac-
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curate, but also significantly faster than the the LCP formulation for reasonable

levels of (friction cone linearization) accuracy. See the plot of the solution time of

a single LCP (using the PATH solver) for various levels of friction approximation

(Figure 5.12). The size of the LCP is 12 + 3d, where d is the number of friction

directions. For comparison, the solution time of the equivalent NCP is also plotted.

At approximately 8 friction directions, the solution time of the LCP is larger than

the NCP. This is an important finding given that for all the above simulations, 8

friction directions is insufficient for generating accurate simulations.

5.3 Computation of Plate’s Orientation

The sinusoidal plate controllers in [119] are presented as acceleration trajecto-

ries. However, in our simulations we regard the plate as kinematic with a position

specified solely as a function of time. Theoretically, we should be able to integrate

these control laws to a position level, but in practice, when there is angular acceler-

ation about multiple axes integrating the angular acceleration to a unit quaternion
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is not possible analytically. Let α(t) = [a1 sin(b1t + c1) . . . a3 sin(b3t + c3)]T be the

angular acceleration of the plate at time t where ai, bi, and ci for i = 1 . . . 3 are the

parameters of the sinusoidal motion. The angular velocity ω is trivially obtained

by integrating α, ω(t) = [−a1 cos(b1t+ c1)/b1 · · · − a3 cos(b3t+ c3)/b3]T .

Let ε(t) = [es ex ey ez] be the unit quaternion of the plate at time t. When

there is only a single angular velocity component, the unit quaternion is easily

(analytically) computed as

ε(t) =

[
cos

(
θ

2

)
sin

(
θ

2

)
k

]T
(5.13)

where θ =
−Ai sin(Bit+ Ci)

B2
i

and k = [1 0 0], [0 1 0] or [0 0 1] for i = 1, 2, or 3

respectively.

When there are multiple angular velocities, a numerical solution must be used

to solve the ODE system defined in equation (2.15). In this paper, we used the

standard fourth order Runge-Kutta method for solving this system. However, there

is an additional requirement to this system; the rotations of the plate about each

axis must be symmetric about zero. The initial value of the unit quaternion that

satisfies this requirement is not known. For example, the Centrifuge field in [119]

specifies the following angular acceleration for the plate:

αx = 100 sin

(
66πt+

1

2
π

)
αy = 100 sin (66πt+ π)

Figure 5.13 shows the resulting rotation angles about the x and y axes if we solve

equation (2.15) with ε(0) = [1 0 0 0], the identity unit quaternion. The rotation

about the y-axis (figure 5.13b) is symmetric about zero, but the rotation about the

x-axis (figure 5.13a) is not.

To find ε(0) such that the symmetry about zero requirement is held, we add

an initialization stage to the simulation. First, a simulation is performed for a

single period of the plate’s motion with ε(0) set to the identity unit quaternion.

This trajectory is converted to Euler angles and the angle offset that makes each



133

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

ra
di

an

time (s)

(a) Rotation About X-Axis

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

ra
di

an

time (s)

(b) Rotation About Y -Axis

Figure 5.13: The x and y angles of rotation for one period of the cen-
trifuge plate motion, when starting with the identity unit
quaternion. The rotation about the x-axis is not symmetric
about zero.

angle symmetric about zero is computed. Lastly, these three angle offsets are con-

verted into a unit quaternion and ε(0) is the sum of the identity quaternion and

the computed offset quaternion. For the Centrifuge field, ε(0) was computed to be

[0.999999, −0.00116298, 3.04478×10−09, −4.24925×10−06]. Figure 5.14 shows the

resulting rotation angles about the x and y axes if we solve equation (2.15) with

this computed initial unit quaternion.

5.4 Summary

We presented the results of a study on the accuracy of our time-stepping

method on a system composed of a rigid plate and a single rigid body. It was veri-

fied that the simulation method matched the theoretical results and agreed qualita-

tively with simulations of problems for which only qualitative experimental results

were available. After verifying our code in this manner, we studied the convergence

behavior of particle trajectories as a function of step size, and found that the con-

vergence properties of such algorithms predicted in past work of Stewart and others

holds. Additionally, we studied the convergence behavior of particle trajectories as
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Figure 5.14: The x and y angles of rotation for one period of the cen-
trifuge plate motion, when starting with the computed ini-
tial unit quaternion.

a function of the linearization of the friction cone. Our preliminary simulation ex-

periments indicate that the nonlinear complementarity formulation is not only more

accurate, but also significantly faster than the linear formulation for reasonable lev-

els of (friction cone linearization) accuracy. This is an important finding and future

work will be devoted to developing NCP solvers that are as robust and efficient as

possible. With the accuracy of our time-stepper verified for this system, the next

chapter addresses the design problem.



6. Planning New Motions

There are two approaches for designing new plate motions; approaches based on

initial value problems and those based on boundary value problems. In both formu-

lations, the goal is to find a feasible set of design parameters and initial conditions

such that a desired part trajectory is achieved. This is related to the kinodynamic

motion planning problem [33], where the goal is to solve a robot motion planning

problem subject to both kinematic and dynamic constraints.

The initial value problem can be solved by breaking the large sequence of

the discrete time equations of motion (equations (2.77) or equations (2.78) for ` =

0 . . . T ) up into a finite number of smaller sub-problems, each solved iteratively. The

design of new motions can then be done using an optimization framework where a

set of initial conditions and design parameters is selected and a simulation of the

current selection is done until the end time T is reached. Based on the results of the

simulation, the objective function is computed and the set of initial conditions and

design parameters is updated. This process continues until the objective function

reaches a minimum value [103].

In the boundary value problem approach, however, the problem cannot be

decoupled into a series of smaller problems. Instead, the constraints of the system

are specified as boundary conditions and the entire system (` = 0 . . . T ) must be

solved [99]. The boundary value approach can be further generalized by adding an

objective function and considering the mixed complementarity problem as a con-

straint of an optimization problem with the boundary conditions as standard non-

linear programming constraints. This resulting problem is known as a mathematical

program with equilibrium constraints (MPEC) [70]:

135
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Definition 5 (Mathematical Program with Equilibrium Constraints).

min
u∈Rn1 ,v∈Rn2

f(u,v) (6.1)

subject to: (u,v) ∈ Z, and (6.2)

v solves MCP(g(u, ·),B), (6.3)

where f is a desired objective function, Z ⊆ Rn1+n2 is a nonempty closed set

(equation (6.2) represents standard nonlinear programming constraints), and equa-

tion (6.3) signifies v is a solution to the MCP defined by the function g and the

bound set B.

The boundary value problem and the MPEC problem are much harder to solve

than the initial value problem. For one, the problem can no longer be decoupled in

time and the resulting problems are much larger.

6.1 Results

In this section, two desired motions of the part on the plate are specified, a

circle motion and a saddle motion. To simplify the dynamics of the problem in the

optimization problem, the part is modeled as a particle. As in [119], the motion of

the plate is restricted to sinusoidal functions with fixed frequency. The goal is to

learn the parameters of the plate’s sinusoidal functions such that the desired part

motions are realized. There are 12 design parameters for this problem, the amplitude

(Ai) and phase (Ci) for each of the 6 acceleration components of the plate:

p̈ = [A1 sin(66πt+ C1) . . . A3 sin(66πt+ C3)]T

α = [A4 sin(66πt+ C4) . . . A6 sin(66πt+ C6)]T

where p̈ = [p̈x p̈y p̈z]
T is the translational acceleration of the plate, and α =

[αx αy αz]
T is the angular acceleration.

We used the initial value problem approach to find the plate motions for achiev-

ing a desired particle trajectory. The step size used in the simulation was h = 0.0005

and friction was modeled using Coulomb’s quadratic law, resulting in an NCP. Given
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a selection of the 12 design parameters, a simulation is performed and a trajectory

for the particle is recorded. Every 0.25 seconds the position and velocity of the par-

ticle is recorded and the error from the desired trajectory is computed. The total

trajectory error is the cumulative sum of these errors. Treating the trajectory error

of a simulation for a given selection of parameters as the objective function to mini-

mize, the Nelder-Mead optimization method was used to search over the parameters

and find a local minimum.

6.1.1 Circle Motion

In [119], a plate controller was presented that results in a velocity field of

a circle. However, in their solution the radius of the circle must be greater than

approximately 6cm, otherwise sticking occurs between the plate and the particle

and the particle does not move very far. The goal in this section is to learn a plate

motion such that a particle placed at a radius of 4-8cm obtains a asymptotic velocity

of approximately (−0.15y, 0.15x). With a desired speed of 0.15R cm/s, where R is

the radius, it should take approximately 41.89 seconds for the particle to traverse

one complete circle. The results of using the controller described in [119] with a

particle placed are various initial radii are shown in figure 6.1.

Our goal is to learn a sinusoidal plate motion such that the desired velocity

magnitude of (−0.15y, 0.15x) is reached for a particle starting with a radius of 4-

8cm. In a similar spirit to their work, we limited the search space to only three of

the parameters: the amplitude of αz, the amplitude of p̈z, and phase of p̈z. The

other 9 parameters were set to 0. Every 0.25 seconds we recorded the position and

asymptotic velocity of the particle on the plate, and the error was the sum of the

position and velocity errors at each record point. The position error was the radial

distance from the original radius and the asymptotic velocity error was the difference

between the asymptotic velocity of the particle and the desired asymptotic velocity

of (−0.15y, 0.15x).

We ran two separate optimizations, one penalizing separation between the part

and the plate and one not penalizing separation. The 3 unknown parameters were
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Figure 6.1: Results of the circle trajectory described in [119] with the
particle starting at various radii. The simulation used a con-
stant step size of .0001 seconds and ran for for 41.89 seconds.
When the particle starts at (4, 0), there are periods of stick-
ing (6.1b) during a cycle of the plate’s motion, and the part
does not travel with the desired speed.

initialized with the values given in [119]:

αz = 100 sin(66πt) −→ A6 = 100 (6.4)

p̈z = 8 sin(66πt+
3

2
π) −→ A3 = 8, C3 =

3

2
π (6.5)

The first results, with the penalty on particle plate separation, took 191 it-

erations to converge to a local minimum with A6 = 62.913, A3 = 9.81585, and

C3 = 6.33218 with an objective function value of 29.14. The desired particle motion

will have an objective value of 0, which means with the no separation constraint

imposed on the system, the solver was unable to find a plate motion that achieved

the desired particle motion. It was still able to find a solution better than the initial

guess, but the desired goal has not been met. The sinusoidal motion of the plate
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found with the no separation constraint is given by:

αz = 62.913 sin(66πt) (6.6)

p̈z = 9.81585 sin(66πt+ 6.33218) (6.7)

Figure 6.2 shows the results of simulation with the learned plate motion. The

learned plate motion was able to complete a full circle (plus some overshoot) when

the initial radius is 8cm, however, with the restrictions of contact maintenance and

limited search space it was unable to find a plate motion that worked for smaller

initial radii.
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Figure 6.2: Results of the learned circle trajectory with a constant step
size of .0001 and a penalty for particle plate separation.

Unlike the analysis done in [119], we can allow the particle to lose and re-

gain contact with the plate (in the presented formulation (equation (2.77)), the

impacts are perfectly inelastic). Removing this restriction increases the number of

possible sinusoidal plate motions available, thus providing an opportunity for the

optimization algorithm to find a better solution. With this restriction removed,

the solver took 163 iterations to converge to a local minimum with A6 = 40.7791,

A3 = 16.3305, and C3 = 6.91229 and an objective function value of 1.03644. This

objective value is much less than the previous value found with the restrictions in
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place and is very close to satisfying the goal.

The corresponding sinusoidal motion of the plate is given by:

αz = 40.8332 sin(66πt) (6.8)

p̈z = 15.3654 sin(66πt+ 6.5374) (6.9)

The results of the simulation are shown in figure 6.3. With this plate motion, the

particle is both sticking and breaking contact (figure 6.3b) during the simulation.

However, the desired asymptotic velocity is nearly obtained for all initial starting

locations of the particle and the trajectory of the particle is as desired. It’s worth

pointing out that this plate motion is not possible to analyze in the work of [119]

since the part is both separating and sticking during the course of this particular

plate motion.
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Figure 6.3: Results of the learned circle velocity field without a contact
maintenance requirement using a constant step size of 0.0001
seconds. The optimization problem took advantage of contact
separation in the solution found.

6.1.2 Saddle Motion

In this section we present the results for learning a sinusoidal plate motion that

creates a saddle velocity field, similar to the field presented in [119]. In particular,
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the goal was to have the y-axis act as a sink, and the x-axis act as a source. We

allowed the optimization algorithm to search over all 12 parameters.

The objective function was to find a asymptotic velocity of the particle equal

to (−0.2x, 0.2y). The initial guess for the plate’s controller parameters was:

A = [8 0.5 − 5 − 1.5 0 0]

C = [150 1.5 80 5.5 0 0]

The solver too took 3731 iterations to converge to a local minimum with

A1 = 3.88479, C1 = −1.08465, A2 = −4.31188, C2 = −2.0938, A4 = 155.816,

C4 = 0.430032, A5 = 204.171, C5 = 5.77261 an objective function value of 2.56985.

The corresponding plate motion is:

αx = 3.88479 sin(66πt− 1.08465) (6.10)

αy = −4.31188 sin(66πt− 2.0938) (6.11)

αz = 0 (6.12)

p̈x = 155.816 sin(66πt+ 0.430032) (6.13)

p̈y = 204.171 sin(66πt+ 5.77261) (6.14)

p̈z = 0 (6.15)

Figure 6.4 illustrates the results of the learned plate motion; a six second

simulation of the plate motion is run for various initial staring locations of the

particle.

6.2 Summary

We designed new plate motions to generate a desired part motion. We were

able to specify two different velocity fields, and using an optimization problem

framework, learn plate motions that realized these respective fields. By relaxing

the contact restrictions required in [119], we were able to construct an improved

circle field plate motion. In future work, we plan to study other sources of error and

quantify their impact on simulation accuracy. For example, we will study the effect
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Figure 6.4: Results of the learned saddle trajectory for various initial
positions and a step size of .0001.

of distributed contacts on the trajectories of 3D parts. This will lead to methods

for developing adaptive step size selection for controlling simulation error. In fact,

this work will go even further. We will gain a thorough understanding of errors

caused by linearization of the friction cones, body geometry, and distance functions.

Ultimately, we plan to develop a method that adaptively makes model linearization

decisions to bound errors from those sources with an acceptable solution time. The

virtual design problem is not possible without the ability to predict the parame-

ters of the underlying complementarity problem. The next chapter addresses this

problem.



7. An MPEC Formulation of Nonrecursive Filtering

In the previous chapters, we have assumed the simulation parameters are known

values. In applications involving intermittent contact, such as robotic surgery or

human assisting robots, these values may not be accurately known and improving

the identification ability of a robot is essential. Identifying the values of these

parameters increases the accuracy of simulations. Estimating the state of a dynamic

system and identifying the parameters of a dynamic model are common problems

in robotics, since a robot’s autonomy is greatly improved when taking into account

the dynamic behavior of the system.

The goal of the estimation problem is to estimate some unknown values using

only a model of the system and noisy input signals. One example is estimating the

position and orientation of a device from a model of the device’s motion and noisy

sensors (e.g. accelerometer, sonar, etc) [32]. Another example is online identification

of a the parameters of a dynamic model from interacting with the environment [38].

7.1 Model

The nonlinear filtering problem is to estimate the values of a state vector

x(t) ∈ Rn at time t, given a set of noisy measurements Y` = {y(t1),y(t2), . . .y(t`)},
where yk ∈ Rm. The assumptions are that x(t) and y(t) evolve according to known

nonlinear functions and unknown noise,

x`+1 = F (x`) +G(x`)ε` (7.1)

y` = H(x`) + n` (7.2)

where F : Rn → Rn, G : Rn → Rn, and H : Rn → Rm are known nonlinear vector-

valued functions (in our case F is a NCP), ε` is the process noise, and n` represents

the observation or measurement noise. The process noise is a random disturbance

added to effect the model propagation step due to unmodeled function parameters.

Often, the noise vectors are assumed to be independent Gaussian white noise.

143
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7.2 Filtering approaches

There are many popular filtering methods available for state estimation of

constrained nonlinear systems, including Extended Kalman Filter [105], Unscented

Kalman Filter [57], Particle Filter [50, 62], and Moving Horizon Estimation [93].

A full discussion of these methods is beyond the scope of this thesis, so we refer

readers to the following papers for more details: [34, 121, 52, 95, 94, 31].

The basic framework of the filtering approach can be summarized in the fol-

lowing form,

x̂`+1 = F (x̂`) +K`(y` −H(x̂`)) (7.3)

where x̂` is the current prediction of x` and K` is the filter gain. Kalman famously

found the optimal value for K` when the dynamic system is linear, and since then

there has been much research improving and extending this method. For example,

the EKF is an extension of the Kalman filter to nonlinear systems. It works by

first linearizing the nonlinear system, and then applying the Kalman filter to the

linearized system.

The linearization of the system at the current state may not accurately cap-

ture the dynamics of the nonlinear system. For example, in the EKF, the mean

is propagated through the full nonlinear model, but the covariance matrix is prop-

agated through the linearized equations. The UKF filter was introduced to avoid

some of the pitfalls associated with the linearization at a single point. The UKF

assumes the probability density of the state vector is Gaussian, and samples it at

several specially chosen points, called sigma points. Particle filtering is related to

the UKF, but instead of sampling the density function in a deterministic fashion,

the points are chosen by random sampling.

7.3 Non-Recursive Filters

Unlike the recursive filters, non-recursive filters store all the measurement data

and process it as a single “batch” of data. In addition, nonrecursive filters may or

may not model process noise like the Kalman filters. With modern hardware the

storage cost is becoming cheaper and the increased processing power is making these
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methods applicable to a broader range of problems.

In the moving horizon estimation approach, the computational burden is fixed

by only considering a finite number, N , of previous estimates. Taking the solution

of a batch of data for xT . . . xT+N and determining its “arrival cost” to the solution

of xT+N ...xT+2N is still an active area of research.

7.4 MPEC Formulation

In contrast to equation 7.1 where random disturbances are used to effect the

model propagation step, we assume the model is a function of a set of time-invariant

model parameters, p, and simultaneously solve for the state and parameters of the

system,

x`+1 = F (x`,p) (7.4)

y` = H(x`) + n` (7.5)

We can now present our non-recursive formulation for the estimation problem

of a NCP system. We consider N points in a trajectory as part of one large opti-

mization problem, which attempts to find the parameters and state that minimizes

the observation error:

min
n0,...,nN , x0,...,xN , p

(x0 − x̄0)T (x0 − x̄0) +
T∑
`=0

(n`)Tn` (7.6)

subject to: p ∈ P ,n ∈ N (7.7)

x`+1 ∈ SOL(MCP(x`,p)) (7.8)

y` = [I 0]x` + n` (7.9)

where x̄0 is the initial state estimate, n is a slack variable representing the error be-

tween observation and prediction, I is an identity matrix of appropriate size, MCP is

the mixed complementarity problem arising from the discrete time dynamics model,

and P and N are the sets of possible parameter values and max observations error

respectively. In this framework, enforcing the physical constraints on parameters is

natural. It also removes the common assumption of Gaussian noise in the observa-
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tion error, replacing it with any algebraic error bounds.

It turns out that this optimization problem is well studied in the mathematical

programming community. It is known as a mathematical program with equilibrium

constraints (MPEC), which we defined in chapter 6 as an alternative approach to

the design problem (see definition 5).

If equations (7.6) and (7.7) are linear and equation (7.8) is an LCP, we arrive at

a specialization of the MPEC known as a linear program with equilibrium constraints

(LPEC). However, for the identification problem, removing the nonlinearities would

force us to make unrealistic assumptions. For one, rotations would be restricted to

“small” values, since the contact Jacobians are functions of the bodies’ states. In

addition, we would be forced to assume that either the parameters or state values

are known to eliminate the bilinear constraints (e.g. the friction model contains

the constraint µλn). This last restriction in particular implies that the MPEC

formulation for the estimation problem can never be an LPEC for any but the most

contrived problems.

7.5 Problems with Filtering Approaches

There are two problems with the filtering techniques that our new formulation

can handle easily. The first problem is filtering approaches implicitly assume that

the parameters evolve with time. However, many parameters evolve with respect

to the state of an object not with time. For example, if trying to predict the

compliance at a contact between time-independent materials, these values will vary

with the position of the contact, not with time. Another problem with these filtering

techniques is they have difficulty enforcing physical constraints on parameters. For

example, the coefficient of friction is always positive for physical systems, but the

filtering process can set this value negative when adding Gaussian noise. There has

been recent work in attempting to overcome these issues in filtering by using problem

specific reparameterizations and a Johnson distribution instead of Gaussian [117].

However, these techniques are problem-specific and non-trivial to implement.



147

7.6 Examples

We present two dual estimation examples; the first example is solving a con-

trolled simulation experiment of a particle falling and sliding on a frictional surface.

In this example we know the exact trajectory of the particle and the coefficient of

friction (since the trajectory was generated in simulation) allowing us to verify the

solution. The second example is from a lab experiment of a sliding block. The block

trajectory was captured from an overhead camera, and the coefficient of surface

friction was unknown. Since the actual solution to this problem is unknown, we

compared the results to a solution found by a standard particle filter.

7.6.1 Simulation Example

7.6.1.1 Single Particle

In this example, a simulation of a particle falling subject to a known applied

force is performed. The particle begins initially at rest, eventually makes contact

with the surface, and lastly slides along the surface (see figure 7.1). The simulated

trajectory of the particle was recorded and noise was artificially added to each point

in the trajectory. The noise was added by uniformly sampling from [−ε, ε]. We

performed five simulations with the same initial conditions and parameters, but for

each subsequent trial we would increase the value of ε. The goal of the experiment

is to simultaneously solve for the noise-free trajectory of the particle and for the

coefficient of friction, µ, between the particle and surface from the noisy trajectory

data.

Applied Force

Initial Pos

Figure 7.1: A particle begins initially at rest and not in contact with the
surface. It is subject to a known applied force and eventually
makes contact with the surface. Afterwards, it slides along
the surface.
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The observable state of the system consists of the x and y position of the

particle, denoted xp and yp, respectively. We can also label the velocity of the

particle, ẋp and ẏp, observable since we can approximate the velocity given two

adjacent position readings. The unobservable state (which must be estimated from

the observed state) consists of the nonpenetration force, λn, friction forces λf, and

the slip speed at the contact σ. The parameter to estimate is the coefficient of

friction, µ. Taken together, the representation of this example becomes:

State: x = [

Observable︷ ︸︸ ︷
xp yp ẋp ẏp |

Unobservable︷ ︸︸ ︷
λn λf σ ]

Observations: y = [xp yp ẋp ẏp]

Parameters: p = [µ]

Mathematically, we can write the state and observation update functions, and

apply bounds on our parameter,

x`+1 ∈ SOL(MCP(x`)) (7.10)

y` =
[
I4×4 04×4

]
x` + n` (7.11)

P = 0 ≤ µ ≤ 1 (7.12)

N = (n`)Tn` ≤ ε2 (7.13)

where the MCP in equation (7.10) is given by:

0 = q`+1 − q` − hν`+1

0 = M(ν`+1 − ν`)− h(Wnλ
`+1
n + Wfλ

`+1
f + λapp)

0 ≤ λ`+1
n ⊥ y`+1

p ≥ 0
}

Normal contact model

0 ≤ λ`+1
f ⊥ Eσ`+1 + WT

f ν
`+1 ≥ 0

0 ≤ σ`+1 ⊥ µλ`+1
n − ETλ`+1

f ≥ 0

 Friction Model

where q =

xp
yp

, ν =

ẋp
ẏp

, M =

m 0

0 m

, Wn =

0

1

, Wf =

−1 1

0 0

, E =
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1

1

, and λapp =

 xapp

−mg

. There are four equations and four complementarity

constraints per time step.

The MPEC formulation of the estimation problem can be written as:

min
x0,...,xN ,n0,...,nN ,µ

(x0 − x̄0)T (x0 − x̄0) +
N∑
`=0

n`
T

n`

subject to:

0 = q`+1 − q` − hν`+1

0 = M(ν`+1 − ν`)− h(Wnλ
`+1
n + Wfλ

`+1
f + λapp)

 4N equations

0 ≤ λ`+1
n ⊥ y`+1

p ≥ 0

0 ≤ λ`+1
f ⊥ Eσ`+1 + WT

f ν
`+1 ≥ 0

0 ≤ σ`+1 ⊥ µλ`+1
n − ETλ`+1

f ≥ 0

 4N complementarity

0 ≤ µ ≤ 1

(n`)Tn` ≤ ε2

 4N + 2 inequalities

y` =
[
I4×4 04×4

]
x` + n`

}
4N equations

We used the AMPL mathematical modeling language [44] to formulate the

MPECs, and the nonlinearly constrained optimization solver KNITRO [21] to solve

them. The values used in simulation were: µ = 0.2, h = .05, q0 = [0, 3], λapp =

[5,−9.81m], m = 1, N = 100. Again, the goal was to simultaneously determine the

value of µ and the real trajectory, from the simulated trajectory with artificial noise

added. The results of KNITRO for increasing levels of artificial noise are shown in

table 7.1. The initial guess provided to KNITRO was: q` = q̃`, λ`n = 0, λ`f = 0,

σ` = 0, µ = 1. KNITRO was able to recover the correct value of µ for increasing

levels of observation error. The objective value of the MPEC was also driven to zero,

which implies that KNITRO also found the correct trajectory. With an observation

error of 0.5, KNITRO was unable to solve the problem. Even with this much noise,

the solver found a very good estimate of µ (remember that µ was initialized at 1.0).

Future work is required to investigate why this level of noise causes solver failure,
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even when such a good estimate of the parameter is found.

Observe. Error (ε) µ Obj. Val Iterations
5.00E-05 0.2 2.03e-07 301
5.00E-04 0.2 1.61e-05 443
5.00E-03 0.2 1.467e-03 19
5.00E-02 0.200022 1.61e-01 149
5.00E-01 0.199873 1.48e+01 96 (infeasible pt)

Table 7.1: Results of the estimation problem for a single particle. The
correct value of µ is 0.2.

7.6.1.2 Multiple Particles

For this example, we extended the single particle example to now include

multiple particles starting with random initial positions (xpi
∈ [−10, 10], ypi

∈ [0, 5])

and random coefficients of friction (µi ∈ (0, 0.5]). The measurement noise was

uniformly sampled from the range [−0.005, 0.005]. The results of KNITRO for

increasing number of particles are shown in table 7.2. The initial guess provided to

KNITRO was: q` = q̃`, λ`n = 0, λ`f = 0, σ` = 0, µi = 1. Even up to 10 particles,

which produces a problem with over 10,000 variables, KNITRO was able to solve

for the trajectory and correct coefficient of friction for each particle. The parameter

error, “µ error” is the root mean squared error for each µi.

# Part. Num. Var. µ Error Obj. Val Iters
2 2006 0 4.09e-03 334
3 3009 0 4.95e-03 185
5 5015 0.000006 1.05e-02 364
10 10030 0.0000072 1.66e-02 281

Table 7.2: Results of the estimation problem with multiple particles. “µ
Error” is the root mean squared error.

7.6.2 Sliding Block Example

While the previous examples validated our new estimation method for a simu-

lated example, this example tests our method on a lab experiment. In this example,

a block with a known weight attached to it is sliding across a table (see figure 7.2).
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x

z

Block Attached
to weight

Weight

Overhead Camera

(a) Schematic (b) Camera Grab

Figure 7.2: Experimental set up. The left figure is a schematic of the
experiment. The right image is a single frame from the over-
head camera. The colored markers on the block were used to
compute its position and orientation.

An overhead camera captures and records the trajectory of the block on the table.

The block was not allowed to tumble, so we were able to model this system using

our 2.5D formulation (section 3.3). The goal of the experiment is to simultaneously

solve for the noise-free trajectory of the block and for the surface friction coefficient

between the block and the table’s surface from the noisy trajectory data. We mod-

eled the surface contact as a support tripod fixed to the sliding block with linearized

friction cones at each of the three contact points (see figure 7.3).

X

Y

Force

Figure 7.3: Surface friction support tripod

The observable state of the system consists of the x, y position of a frame

attached to a location on the block, and the angle, θ of the frame in a fixed world
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frame. These values are concatenated into the configuration vector q. We can also

label the velocity of the block, ν, observable since we can approximate the velocity

given two adjacent configuration readings from the camera. The unobservable state

consists of the nonpenetration forces at each tripod support point, λn, friction forces

λf at each tripod support point, and the slip speed, σ, at each tripod support point.

The single parameter to estimate for this problem is the coefficient of friction, µ,

which is assumed the same and constant at all three points. Taken together, the

representation of this example becomes:

State: x = [

Observable︷︸︸︷
q ν |

Unobservable︷ ︸︸ ︷
λn λf σ ]

Observations: y = [q ν]

Parameters: p = [µ]

The MPEC formulation of the estimation problem can be written as:

min
x0,...,xN ,n0,...,nN ,µ

(x0 − x̄0)T (x0 − x̄0) +
N∑
`=0

n`
T

n`

subject to:

0 = q`+1 − q` − hν`+1

0 = M(ν`+1 − ν`)− h(Wnλ
`+1
n + Wfλ

`+1
f + λapp)

 6N equations

0 ≤ λ`+1
n ⊥ y`+1 ≥ 0

0 ≤ λ`+1
f ⊥ Eσ`+1 + WT

f ν
`+1 ≥ 0

0 ≤ σ`+1 ⊥ µλ`+1
n − ETλ`+1

f ≥ 0

 (6 + 3d)N complementarity

0 ≤ µ ≤ 1

(n`)Tn` ≤ ε2

 6N + 1 inequalities

y` =
[
I6×6 06×6

]
x` + n`

}
6N equations

where d is the number of friction directions in the polyhedral approximation of the

friction cone.

We used the AMPL to formulate the MPEC, and KNITRO to solve it. KNI-
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TRO was able to find a solution, and estimated the coefficient of friction µ =

0.330311. This value appears plausible, but we would like to be able to compare this

solution to a well established method. Therefore, we also solved for the trajectory

of the block and the coefficient of surface friction using a standard particle filtering

method. Unlike the MPEC approach, there is no natural way to enforce the non-

negativity constraint on µ. During the course of the filtering, if the filter ever tried

to set µ to a negative number, we simply set the value to 0. This may break any the-

oretical convergence guarantees, but it allows us to make a quantitative comparison

with another method.
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Figure 7.4: Comparison of trajectory between particle filter, MPEC and
observation

In figure 7.4, a plot of the block’s trajectory versus time is given for the raw
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camera data, the MPEC’s solution, and the particle filter’s solution. For all three

components of the configurations, there is good agreement between the MPEC and

filtered results.
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Figure 7.5: Comparison of velocity between particle filter, MPEC and
observation

In figure 7.5, a plot of the block’s velocity versus time is given for the raw

camera data, the MPEC’s solution, and the particle filter’s solution. There is no

distinguishable difference between the results of the MPEC and particle filter for the

ẏ and θ̇ components of the velocity. Comparing the ẋ component, the two solutions

agree well yet again the MPEC’s solution appears qualitatively better.

We showed that the MPEC’s solution for the real trajectory qualitatively

matched a solution found by another method. Next we need to compare the value

found for µ. In figure 7.6, the particle filter’s time varying estimate of µ is plotted
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Figure 7.6: Comparison of the surface friction estimate between the par-
ticle filter and MPEC

against the MPEC’s time invariant solution. The mean of the particle filter’s esti-

mate of µ, that is the average value of µ over the trajectory, is 0.3246. The MPEC’s

solution produced a value of µ = 0.330311, qualitatively matching the value found

by the filter.

The MPEC formulation presented in equations (7.6)–(7.9) does not require the

entire trajectory to be included in the formulation. At some time t`, we can formulate

the MPEC using only the previous k observations. Figure 7.7 shows a comparison of

the MPEC’s solution for levels of k = 5, 20, and 50 to the particle filter’s solution and

the full history MPEC’s solution. Increasing the value of k decreases the variance

in the solution found by the MPEC. This makes sense, since increasing the window

size forces the parameters to become less and less time varying.

One main difference between the recursive filtering and MPEC filtering ap-

proaches is that the filtering approach is a stochastic process whereas the MPEC

approach with moving window is purely algebraic. Future work will compare these

two filtering approaches and better understand the similarities and differences be-

tween them.
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Figure 7.7: Comparison of the surface friction estimate between the par-
ticle filter, MPECs with various levels of history windows,
and the MPEC with full history.

7.7 Summary

We presented our initial results of a new nonrecursive nonlinear filter for sys-

tems with complementarity constraints. In future work we plan to incorporate ideas

from the moving horizon framework to this method in order to restrict the problem

size. We would also like to address the question of observability of these nonlin-

ear non-smooth systems. We would also like to design control laws that excite the

parameters of interest, improving the identification problem.



8. Discussion and Conclusions

In Chapter 3, four new time-stepping formulations were presented. These formu-

lations were constructed for a variety of reasons, including accuracy, performance,

problem class, and design. We see several directions for future work. We would

like to address the existence and uniqueness of solutions for the fully implicit mixed

NCP we developed. For our work with non-convex polygonal constraints, we would

like to extend the method to 3D bodies. In addition, when interpenetration has

occurred, there is nondeterminism in the formulation that we would like to remove.

We have already begun implementing these extensions, details can be found in the

following tech report [82].

For all the time-stepping methods, we also wish to perform more extensive

numerical experimentation. In addition, we have be restricted (in a distribution

sense) by the robustness of available solvers. Even though PATH is an excellent

solver capable of solving a large class of mixed complementarity problems, it is

not open source and not freely distributable. We would like to develop new open-

source solvers specially designed to solve the LCPs and NCPs that arise from these

time-stepping formulations. It may be possible to develop time-stepper specific

optimizations, which would be impossible to implement in general purpose solvers.

In Chapter 4, we presented daVinci Code (dVC), which is a new software tool

we designed and implemented to facilitate simulation, analysis, and virtual design of

multibody systems with intermittent frictional unilateral contact. We are currently

extending our simulator to work for 3D systems. We also would like to develop a

suite of test problems, for which we can test the accuracy of various time-stepping

methods.

In Chapter 5, we presented the results of a study on the accuracy of our time-

stepping method on a system composed of a rigid plate and a single rigid body. It

was verified that the simulation method matched the theoretical results and agreed

qualitatively with simulations of problems for which only qualitative experimental

results were available. After verifying our code in this manner, we studied the
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convergence behavior of particle trajectories as a function of step size, and found

that the convergence properties of such algorithms predicted in past work of Stewart

and others holds. Additionally, we studied the convergence behavior of particle

trajectories as a function of the linearization of the friction cone. Our preliminary

simulation experiments indicate that the nonlinear complementarity formulation is

not only more accurate, but also significantly faster than the linear formulation

for reasonable levels of (friction cone linearization) accuracy. This is an important

finding and future work will be devoted to developing NCP solvers that are as robust

and efficient as possible.

In Chapter 6, we designed new plate motions to generate a desired part motion.

We were able to specify two different velocity fields, and using an optimization

problem framework, learn plate motions that realized these respective fields. By

relaxing the contact restrictions required in [119], we were able to construct an

improved circle field plate motion. In future work, we plan to study other sources of

error and quantify their impact on simulation accuracy. For example, we will study

the effect of distributed contacts on the trajectories of 3D parts. This will lead to

methods for developing adaptive step size selection for controlling simulation error.

In fact, this work will go even further. We will gain a thorough understanding of

errors caused by linearization of the friction cones, body geometry, and distance

functions. Ultimately, we plan to develop a method that adaptively makes model

linearization decisions to bound errors from those sources with an acceptable solution

time.

In Chapter 7, we presented our initial results of a new nonrecursive nonlinear

filter for systems with complementarity constraints. In future work we plan to

incorporate ideas from the moving horizon framework to this method in order to

restrict the problem size. We would also like to address the question of observability

of these nonlinear non-smooth systems. We would also like to design control laws

that excite the parameters of interest, improving the identification problem.
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